Quantum Polynomial Hierarchies: Karp-Lipton, Error Reduction, and Lower Bounds

Avantika Agarwal¹ Sevag Gharibian² Venkata Koppula³ Dorian Rudolph²

¹David R. Cheriton School of Computer Science and Institute for Quantum Computing, University of Waterloo ²Department of Computer Science and Institute for Photonic Quantum Systems (PhoQS), Paderborn University

³Department of Computer Science and Engineering, Indian Institute of Technology Delhi

• ••• •••• •••• ••• ••• ••• ••• ••• •••	Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
	000					

- 🚯 Quantum Karp-Lipton
- Interpretation Error Reduction
- 5 Lower Bounds

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
OOO	0000	000		00	00
The Polun	omial Hie	erarchu (PH)			

• Introduced by Stockmeyer 1976, staple of classical complexity theory.

Introduction Results Quantum Karp-Lipton Error Reduction Lower Bounds Conclusion of The Polymonial Hierarchy (PH)

The Polynomial Hierarchy (PH)

- Introduced by Stockmeyer 1976, staple of classical complexity theory.
- Applications from *randomized computation* to *quantum advantage* analysis for near-term quantum computers.

 Introduction
 Results
 Quantum Karp-Lipton
 Error Reduction
 Lower Bounds
 Conclusion

 Obs
 Obs
 Obs
 Obs
 Obs
 Obs
 Obs
 Obs

The Polynomial Hierarchy (PH)

- Introduced by Stockmeyer 1976, staple of classical complexity theory.
- Applications from *randomized computation* to *quantum advantage* analysis for near-term quantum computers.

Definition (Σ_i^{P})

 $L \in \Sigma_i^{\mathsf{P}}$ if there exists a deterministic poly-time Turing machine M s.t.

•
$$x \in L \Rightarrow \exists y_1 \forall y_2 \exists y_3 \cdots Q_i y_i \colon M(x, y_1, \dots, y_i) = 1$$

• $x \notin L \Rightarrow \forall y_1 \exists y_2 \forall y_3 \cdots \overline{Q_i} y_i \colon M(x, y_1, \dots, y_i) = 0$

 Introduction
 Results
 Quantum Karp-Lipton
 Error Reduction
 Lower Bounds
 Conclusion

 Obs
 Obs
 Obs
 Obs
 Obs
 Obs
 Obs
 Obs

The Polynomial Hierarchy (PH)

- Introduced by Stockmeyer 1976, staple of classical complexity theory.
- Applications from *randomized computation* to *quantum advantage* analysis for near-term quantum computers.

Definition (Π_i^{P})

 $L \in \Sigma_i^{\mathsf{P}}$ if there exists a deterministic poly-time Turing machine M s.t.

•
$$x \in L \Rightarrow \forall y_1 \exists y_2 \forall y_3 \cdots \overline{Q_i} y_i \colon M(x, y_1, \dots, y_i) = 1$$

• $x \notin L \Rightarrow \exists y_1 \forall y_2 \exists y_3 \cdots Q_i y_i \colon M(x, y_1, \dots, y_i) = 0$

• Π^{P}_i : Same as Σ^{P}_i , but with inverted quantifiers

The *Quantum* Polynomial Hierarchy (QPH)

• Many ways to define a quantum polynomial hierarchy...

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
00●	0000	000		00	00
The Quantu	m Polynon	nial Hierarchy (Q	PH)		

Quantum Classical PH (QCPH) [Gharibian, Santha, Sikora, Sundaram, Yirka, 2022]

- Completeness: $x \in L_{yes} \Rightarrow \exists y_1 \forall y_2 \cdots Q_i y_i \colon \Pr[V_n \text{ accepts } (x, y_1, \dots, y_i)] \ge c$
- Soundness: $x \in L_{no} \Rightarrow \forall y_1 \exists y_2 \cdots \overline{Q_i} y_i$: $\Pr[V_n \text{ accepts } (x, y_1, \dots, y_i)] \le s$

Quantum Classical PH (QCPH) [Gharibian, Santha, Sikora, Sundaram, Yirka, 2022]

- Completeness: $x \in L_{yes} \Rightarrow \exists y_1 \forall y_2 \cdots Q_i y_i$: $\Pr[V_n \text{ accepts } (x, y_1, \dots, y_i)] \ge c$
- Soundness: $x \in L_{no} \Rightarrow \forall y_1 \exists y_2 \cdots \overline{Q_i} y_i$: $\Pr[V_n \text{ accepts } (x, y_1, \dots, y_i)] \le s$
- QPH [GSSSY22]: proofs are mixed states $x \in L_{yes} \Rightarrow \exists \rho_1 \forall \rho_2 \cdots Q_i \rho_i \colon \Pr[V_n \text{ accepts } |x\rangle\langle x| \otimes \rho_1 \otimes \cdots \otimes \rho_i] \ge c.$

Introduction Error Reduction Lower Bounds Results 000

The *Quantum* Polynomial Hierarchy (OPH)

Quantum Classical PH (QCPH) [Gharibian, Santha, Sikora, Sundaram, Yirka, 2022]

Promise problem $L = (L_{ves}, L_{no}) \in QC\Sigma_i$ if there exists a *poly-time uniform* family of quantum circuits $\{V_n\}_{n \in \mathbb{N}}$ and c, s with $c - s \ge 1/\operatorname{poly}(n)$ s.t.

- Completeness: $x \in L_{ves} \Rightarrow \exists y_1 \forall y_2 \cdots Q_i y_i$: $\Pr[V_n \text{ accepts } (x, y_1, \dots, y_i)] \ge c$
- $x \in L_{n_0} \Rightarrow \forall v_1 \exists v_2 \cdots \overline{Q_i} v_i \colon \Pr[V_n \text{ accepts } (x, v_1, \dots, v_i)] \leq s$ Soundness:

• QPH [GSSSY22]: proofs are mixed states $x \in L_{\text{vos}} \Rightarrow \exists \rho_1 \forall \rho_2 \cdots Q_i \rho_i \colon \Pr[V_n \text{ accepts } |x\rangle \langle x| \otimes \rho_1 \otimes \cdots \otimes \rho_i] \ge c.$ • pureOPH (this work): proofs are pure states $x \in L_{\text{ves}} \Rightarrow \exists |\psi_1\rangle \forall |\psi_2\rangle \cdots Q_i |\psi_i\rangle \colon \Pr[V_n \text{ accepts } |x\rangle \otimes |\psi_1\rangle \otimes \cdots \otimes |\psi_i\rangle] \ge c.$ Introduction
OOOResults
OOOQuantum Karp-Lipton
OOOError Reduction
OOOLower Bounds
OOConclusion
OOThe Ouantum Polynomial Hierarchy (OPH)

Quantum Classical PH (QCPH) [Gharibian, Santha, Sikora, Sundaram, Yirka, 2022]

- Completeness: $x \in L_{yes} \Rightarrow \exists y_1 \forall y_2 \cdots Q_i y_i$: $\Pr[V_n \text{ accepts } (x, y_1, \dots, y_i)] \ge c$
- Soundness: $x \in L_{no} \Rightarrow \forall y_1 \exists y_2 \cdots \overline{Q_i} y_i \colon \Pr[V_n \text{ accepts } (x, y_1, \dots, y_i)] \le s$
- QPH [GSSSY22]: proofs are mixed states x ∈ L_{yes} ⇒ ∃ρ₁∀ρ₂ ··· Q_iρ_i: Pr[V_n accepts |x⟩⟨x| ⊗ ρ₁ ⊗ ··· ⊗ ρ_i] ≥ c.
 pureQPH (this work): proofs are pure states x ∈ L_{yes} ⇒ ∃|ψ₁⟩∀|ψ₂⟩ ··· Q_i|ψ_i⟩: Pr[V_n accepts |x⟩ ⊗ |ψ₁⟩ ⊗ ··· ⊗ |ψ_i⟩] ≥ c.
 QCMA ≡ QCΣ₁, coQMA ≡ QΠ₁ = pureQΠ₁

Introduction Results Quantum Karp-Lipton Error Reduction Lower Bounds Conclusion of The Quantum Polynomial Hierarchy (OPH)

The *Quantum* Polynomial Hierarchy (QPH)

Quantum Classical PH (QCPH) [Gharibian, Santha, Sikora, Sundaram, Yirka, 2022]

- Completeness: $x \in L_{yes} \Rightarrow \exists y_1 \forall y_2 \cdots Q_i y_i$: $\Pr[V_n \text{ accepts } (x, y_1, \dots, y_i)] \ge c$
- Soundness: $x \in L_{no} \Rightarrow \forall y_1 \exists y_2 \cdots \overline{Q_i} y_i \colon \Pr[V_n \text{ accepts } (x, y_1, \dots, y_i)] \le s$
- QPH [GSSSY22]: proofs are mixed states x ∈ L_{yes} ⇒ ∃ρ₁∀ρ₂ ··· Q_iρ_i: Pr[V_n accepts |x⟩⟨x| ⊗ ρ₁ ⊗ ··· ⊗ ρ_i] ≥ c.
 pureQPH (this work): proofs are pure states x ∈ L_{yes} ⇒ ∃|ψ₁⟩∀|ψ₂⟩ ··· Q_i|ψ_i⟩: Pr[V_n accepts |x⟩ ⊗ |ψ₁⟩ ⊗ ··· ⊗ |ψ_i⟩] ≥ c.
 QCMA ≡ QCΣ₁, coQMA ≡ QΠ₁ = pureQΠ₁
 QΠ₂ = QΣ₂ ≡ QRG(1) ⊆ PSPACE [GSSSY22] [Jain, Watrous, 2009]

Introduction Results Quantum Karp-Lipton Error Reduction OO Conclusion O

The *Quantum* Polynomial Hierarchy (QPH)

Quantum Classical PH (QCPH) [Gharibian, Santha, Sikora, Sundaram, Yirka, 2022]

- Completeness: $x \in L_{yes} \Rightarrow \exists y_1 \forall y_2 \cdots Q_i y_i$: $\Pr[V_n \text{ accepts } (x, y_1, \dots, y_i)] \ge c$
- Soundness: $x \in L_{no} \Rightarrow \forall y_1 \exists y_2 \cdots \overline{Q_i} y_i$: $\Pr[V_n \text{ accepts } (x, y_1, \dots, y_i)] \leq s$
- QPH [GSSSY22]: proofs are mixed states x ∈ L_{yes} ⇒ ∃ρ₁∀ρ₂ ··· Q_iρ_i: Pr[V_n accepts |x⟩⟨x| ⊗ ρ₁ ⊗ ··· ⊗ ρ_i] ≥ c.
 pureQPH (this work): proofs are pure states x ∈ L_{yes} ⇒ ∃|ψ₁⟩∀|ψ₂⟩ ··· Q_i|ψ_i⟩: Pr[V_n accepts |x⟩ ⊗ |ψ₁⟩ ⊗ ··· ⊗ |ψ_i⟩] ≥ c.
 QCMA ≡ QCΣ₁, coQMA ≡ QΠ₁ = pureQΠ₁
 QΠ₂ = QΣ₂ ≡ QRG(1) ⊆ PSPACE [GSSSY22] [Jain, Watrous, 2009]
 - Sion's minimax theorem: $\max_{\rho} \min_{\sigma} \operatorname{Tr}(H(\rho \otimes \sigma)) = \min_{\sigma} \max_{\rho} \operatorname{Tr}(H(\rho \otimes \sigma))$

Introduction Results Quantum Karp-Lipton Error Reduction OO Conclusion O

The *Quantum* Polynomial Hierarchy (QPH)

Quantum Classical PH (QCPH) [Gharibian, Santha, Sikora, Sundaram, Yirka, 2022]

- Completeness: $x \in L_{yes} \Rightarrow \exists y_1 \forall y_2 \cdots Q_i y_i$: $\Pr[V_n \text{ accepts } (x, y_1, \dots, y_i)] \ge 1 \frac{1}{\exp}$
- Soundness: $x \in L_{no} \Rightarrow \forall y_1 \exists y_2 \cdots \overline{Q_i} y_i$: $\Pr[V_n \text{ accepts } (x, y_1, \dots, y_i)] \leq \frac{1}{\exp}$
- QPH [GSSSY22]: proofs are mixed states

 x ∈ L_{yes} ⇒ ∃ρ₁ ∀ρ₂ ··· Q_iρ_i: Pr[V_n accepts |x⟩⟨x| ⊗ ρ₁ ⊗ ··· ⊗ ρ_i] ≥ c.

 pureQPH (this work): proofs are pure states

 x ∈ L_{yes} ⇒ ∃|ψ₁⟩∀|ψ₂⟩ ··· Q_i|ψ_i⟩: Pr[V_n accepts |x⟩ ⊗ |ψ₁⟩ ⊗ ··· ⊗ |ψ_i⟩] ≥ c.

 QCMA ≡ QCΣ₁, coQMA ≡ QΠ₁ = pureQΠ₁
 QΠ₂ = QΣ₂ ≡ QRG(1) ⊆ PSPACE [GSSSY22] [Jain, Watrous, 2009]

 Sion's minimax theorem: max_ρ min_σ Tr(H(ρ ⊗ σ)) = min_σ max_ρ Tr(H(ρ ⊗ σ))
- Error reduction possible for QCPH but not known for QPH, pureQPH.

Introduction 000	Results ●000	Quantum Karp-Lipton 000	Error Reduction	Lower Bounds	Conclusion 00

- Interpretation
 Interpretation
- 5 Lower Bounds

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0●00	000		00	00
Results: Qu	ıantum Kar	p-Lipton			

• Karp-Lipton theorem: SAT cannot be solved with poly-size circuits, unless PH collapses to its second level.

Introduction Results Quantum Karp-Lipton Error Reduction Lower Bounds Conclusion on Second Se

Results: Quantum Karp-Lipton

- Karp-Lipton theorem: SAT cannot be solved with poly-size circuits, unless PH collapses to its second level.
 - Generally assumed that $\Sigma_{k+1} \neq \Sigma_k$ for all k.

Introduction Results Quantum Karp-Lipton Error Reduction Lower Bounds Conclusion on Solution Conclusion on Solution Conclusion on Solution Conclusion on Solution Conclusion Con

Results: Quantum Karp-Lipton

- Karp-Lipton theorem: SAT cannot be solved with poly-size circuits, unless PH collapses to its second level.
 - Generally assumed that $\Sigma_{k+1} \neq \Sigma_k$ for all k.
 - Formally: If NP \subseteq P_{/poly}, then $\Pi_2 = \Sigma_2$ and therefore PH = Σ_2 .

Introduction Results Quantum Karp-Lipton Error Reduction Lower Bounds Conclusion on Social Social Conclusion on Social So

Results: Quantum Karp<u>–Lipton</u>

- Karp-Lipton theorem: SAT cannot be solved with poly-size circuits, unless PH collapses to its second level.
 - Generally assumed that $\Sigma_{k+1} \neq \Sigma_k$ for all k.
 - Formally: If NP \subseteq P_{/poly}, then $\Pi_2 = \Sigma_2$ and therefore PH = Σ_2 .
- GSSSY22: If Precise-QCMA \subseteq BQP $_{/mpoly}$, then QC $\Pi_2 =$ QC Σ_2 .

Introduction Results Quantum Karp-Lipton Error Reduction OOO OO OO OO

Results: Quantum Karp-Lipton

- Karp-Lipton theorem: SAT cannot be solved with poly-size circuits, unless PH collapses to its second level.
 - Generally assumed that $\Sigma_{k+1} \neq \Sigma_k$ for all k.
 - Formally: If NP \subseteq P_{/poly}, then $\Pi_2 = \Sigma_2$ and therefore PH = Σ_2 .
- GSSSY22: If Precise-QCMA \subseteq BQP_{/mpoly}, then QC $\Pi_2 =$ QC Σ_2 .

$BQP_{/mpoly}$ (BQP with deterministic poly-size Merlin-like advice)

Promise problem $L = (L_{\text{yes}}, L_{\text{no}}) \in \text{BQP}_{/\text{mpoly}}$ if there exists a *poly-time uniform* family of quantum circuits $\{C_n\}_{n \in \mathbb{N}}$ and a collection of advice strings $\{a_n\}_{n \in \mathbb{N}}$ with $|a_n| = \text{poly}(n)$ s.t.

•
$$x \in L_{\text{yes}} \Rightarrow \Pr[C_n \text{ accepts } |x\rangle|a_n\rangle] \ge 2/3$$

•
$$x \in L_{no} \Rightarrow \Pr[C_n \text{ accepts } |x\rangle|a_n\rangle] \le 1/3$$

Introduction Results Quantum Karp-Lipton Error Reduction OOO OO OO OO

Results: Quantum Karp-Lipton

- Karp-Lipton theorem: SAT cannot be solved with poly-size circuits, unless PH collapses to its second level.
 - Generally assumed that $\Sigma_{k+1} \neq \Sigma_k$ for all k.
 - Formally: If NP \subseteq P_{/poly}, then $\Pi_2 = \Sigma_2$ and therefore PH = Σ_2 .
- GSSSY22: If Precise-QCMA \subseteq BQP_{/mpoly}, then QC $\Pi_2 =$ QC Σ_2 .

$BQP_{/mpoly}$ (BQP with deterministic poly-size Merlin-like advice)

Promise problem $L = (L_{\text{yes}}, L_{\text{no}}) \in \text{BQP}_{/\text{mpoly}}$ if there exists a *poly-time uniform* family of quantum circuits $\{C_n\}_{n \in \mathbb{N}}$ and a collection of advice strings $\{a_n\}_{n \in \mathbb{N}}$ with $|a_n| = \text{poly}(n)$ s.t.

- $x \in L_{\text{yes}} \Rightarrow \Pr[C_n \text{ accepts } |x\rangle|a_n\rangle] \ge 2/3$
- $x \in L_{no} \Rightarrow \Pr[C_n \text{ accepts } |x\rangle|a_n\rangle] \le 1/3$
- Why? Same problem as <code>∃BPP vs. MA: BQP_/ poly</code> has to accept with probability $\leq 1/3$ or $\geq 2/3$ even for bad advice!

A. Agarwal, S. Gharibian, V. Koppula, D. Rudolph

Introduction Results Quantum Karp-Lipton Error Reduction OOO Conclusion OO

Results: Quantum Karp-Lipton

- Karp-Lipton theorem: SAT cannot be solved with poly-size circuits, unless PH collapses to its second level.
 - Generally assumed that $\Sigma_{k+1} \neq \Sigma_k$ for all k.
 - Formally: If NP \subseteq P_{/poly}, then $\Pi_2 = \Sigma_2$ and therefore PH = Σ_2 .
- GSSSY22: If Precise-QCMA \subseteq BQP_{/mpoly}, then QC Π_2 = QC Σ_2 .

Collapse theorem for QCPH

If for any $k \ge 1$, $QC\Pi_k = QC\Sigma_k$, then $QCPH = QC\Sigma_k$.

• Also in concurrent work [Falor, Ge, Natarajan, 2023]

Introduction Results Quantum Karp-Lipton Error Reduction OOO OO OO OO OO

Results: Quantum Karp-Lipton

- Karp-Lipton theorem: SAT cannot be solved with poly-size circuits, unless PH collapses to its second level.
 - Generally assumed that $\Sigma_{k+1} \neq \Sigma_k$ for all k.
 - Formally: If NP \subseteq P_{/poly}, then $\Pi_2 = \Sigma_2$ and therefore PH = Σ_2 .
- GSSSY22: If Precise-QCMA \subseteq BQP_{/mpoly}, then QC Π_2 = QC Σ_2 .

Collapse theorem for QCPH

If for any $k \ge 1$, $QC\Pi_k = QC\Sigma_k$, then $QCPH = QC\Sigma_k$.

Karp-Lipton theorem for QCPH

If QCMA \subseteq BQP_{/mpoly'} then QCPH = QC Σ_2 = QC Π_2 .

Introduction Results Quantum Karp-Lipton Error Reduction OOO OO OO OO OO

Results: Quantum Karp-Lipton

- Karp-Lipton theorem: SAT cannot be solved with poly-size circuits, unless PH collapses to its second level.
 - Generally assumed that $\Sigma_{k+1} \neq \Sigma_k$ for all k.
 - Formally: If NP \subseteq P_{/poly}, then $\Pi_2 = \Sigma_2$ and therefore PH = Σ_2 .
- GSSSY22: If Precise-QCMA \subseteq BQP_{/mpoly}, then QC Π_2 = QC Σ_2 .

Collapse theorem for QCPH

If for any $k \ge 1$, $QC\Pi_k = QC\Sigma_k$, then $QCPH = QC\Sigma_k$.

Karp-Lipton theorem for QCPH

If QCMA
$$\subseteq$$
 BQP_{/mpoly'} then QCPH = QC Σ_2 = QC Π_2 .

• QCMA cannot be solved by (non-uniform) poly-size quantum circuits, unless QCPH collapses to its second level.

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	00●0	000		00	00
Results: I	- rror Redi	uction			

For all i > 0 and $c - s \ge 1/p(n)$ for some polynomial p,

• For even i > 0:

pureQ
$$\Pi_i(c,s) \subseteq \text{pureQ}\Pi_i^{\text{SEP}}\left(1 - \frac{1}{e^n}, 1 - \frac{1}{np(n)^2}\right)$$

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	00●0	000		00	00
Results:	Error Red	uction			

For all i > 0 and $c - s \ge 1/p(n)$ for some polynomial p,

- For even i > 0:
 - pure $Q\Sigma_i(c, s) \subseteq pure Q\Sigma_i^{SEP}(1/np(n)^2, 1/e^n)$
 - pure $Q\Pi_i(c, s) \subseteq pure Q\Pi_i^{SEP}(1 1/e^n, 1 1/np(n)^2)$

Solution For odd i > 0:

- pure $Q\Sigma_i(c, s) \subseteq pure Q\Sigma_i^{SEP}(1 1/e^n, 1 1/np(n)^2)$
- ② pureQ $\Pi_i(c, s)$ ⊆ pureQ $\Pi_i^{\text{SEP}}(1/np(n)^2, 1/e^n)$

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	00●0	000		00	00
Results:	Error Red	uction			

For all i > 0 and $c - s \ge 1/p(n)$ for some polynomial p,

- For even i > 0:
 - pure $Q\Sigma_i(c,s) \subseteq pure Q\Sigma_{i_{OUT}}^{SEP}(1/np(n)^2, 1/e^n)$
 - pureQ $\Pi_i(c,s) \subseteq \text{pureQ}\Pi_i^{\text{SEP}}(1-1/e^n, 1-1/np(n)^2)$
- ② For odd i > 0:
 - pure $Q\Sigma_i(c,s) \subseteq pure Q\Sigma_i^{SEP}(1-1/e^n, 1-1/np(n)^2)$
 - ② pureQ $\Pi_i(c,s)$ ⊆ pureQ $\Pi_i^{\mathsf{SEP}}(1/np(n)^2, 1/e^n)$

• pureQ $\Sigma_i^{\text{SEP}} \subseteq \text{pureQ}\Sigma_i$ same as pureQ Σ_i , but YES-case POVM must be separable across all *i* proofs: $H = \sum_j H_1^{(j)} \otimes \cdots \otimes H_i^{(j)}$

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	00●0	000		00	00
Results:	Error Red	uction			

For all i > 0 and $c - s \ge 1/p(n)$ for some polynomial p,

- For even i > 0:
 - pure $Q\Sigma_i(c, s) \subseteq pure Q\Sigma_i^{SEP}(1/np(n)^2, 1/e^n)$
 - pure $Q\Pi_i(c,s) \subseteq pure Q\Pi_i^{SEP}(1-1/e^n, 1-1/np(n)^2)$
- ② For odd i > 0:
 - pure $Q\Sigma_i(c, s) \subseteq pure Q\Sigma_i^{SEP}(1 1/e^n, 1 1/np(n)^2)$
 - ② pureQ $\Pi_i(c,s)$ ⊆ pureQ $\Pi_i^{\text{SEP}}(1/np(n)^2, 1/e^n)$
- **Significance:** One-sided error reduction for QMA(2) [Aaronson, Beigi, Drucker, Fefferman, Shor, 2008] is the first step in the two-sided error reduction [Harrow, Montanaro, 2012], also relying on verifier separability.

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	00●0	000		00	00
Results:	Error Red	uction			

For all i > 0 and $c - s \ge 1/p(n)$ for some polynomial p,

- For even i > 0:
 - pure $Q\Sigma_i(c,s) \subseteq pure Q\Sigma_{i_{OUT}}^{SEP}(1/np(n)^2, 1/e^n)$
 - pure $Q\Pi_i(c,s) \subseteq pure Q\Pi_i^{SEP}(1-1/e^n, 1-1/np(n)^2)$
- Solution For odd i > 0:
 - pure $Q\Sigma_i(c,s) \subseteq pure Q\Sigma_i^{SEP}(1-1/e^n, 1-1/np(n)^2)$
 - ② pureQ $\Pi_i(c,s)$ ⊆ pureQ $\Pi_i^{\text{SEP}}(1/np(n)^2, 1/e^n)$
- **Significance:** One-sided error reduction for QMA(2) [Aaronson, Beigi, Drucker, Fefferman, Shor, 2008] is the first step in the two-sided error reduction [Harrow, Montanaro, 2012], also relying on verifier separability.
 - Note, $QMA(2) \subseteq Q\Sigma_3 \subseteq pureQ\Sigma_3$.

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	000●	000		00	00
Results: U	pper & Lo	wer Bounds			

Lemma

For all even $k \ge 2$, $QC\Pi_k \subseteq pureQ\Pi_k$.

 Introduction
 Results
 Quantum Karp-Lipton
 Error Reduction
 Lower Bounds
 Conclusion

 Results:
 Upper & Lower Bounds

Lemma

```
For all even k \ge 2, QC\Pi_k \subseteq pureQ\Pi_k.
```

Theorem

 $QCPH \subseteq pureQPH \subseteq EXP^{PP}$

 Introduction
 Results
 Quantum Karp-Lipton
 Error Reduction
 Lower Bounds
 Conclusion

 Results:
 Upper & Lower Bounds

Lemma

```
For all even k \ge 2, QC\Pi_k \subseteq pureQ\Pi_k.
```

Theorem

 $QCPH \subseteq pureQPH \subseteq EXP^{PP}$

• Concurrent work: QCPH = DistributionQCPH ⊆ QPH, at the cost of constant factor blowup in level [Grewal, Yirka, 2024].

 Introduction
 Results
 Quantum Karp-Lipton
 Error Reduction
 Lower Bounds
 Conclusion

 Results:
 Upper & Lower Bounds

Lemma

```
For all even k \ge 2, QC\Pi_k \subseteq pureQ\Pi_k.
```

Theorem

 $QCPH \subseteq pureQPH \subseteq EXP^{PP}$

- Concurrent work: QCPH = DistributionQCPH ⊆ QPH, at the cost of constant factor blowup in level [Grewal, Yirka, 2024].
- Containment in EXP^{PP} follows from Toda's theorem:

$$pureQ\Sigma_i \subseteq NEXP^{NP^{i-1}} \subseteq EXP^{NP^i} = EXP^{PP} = EXP^{PP}$$

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
		●oo			

Introduction

2 Results

Error Reduction

5 Lower Bounds

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion		
000	0000	õ●0		00	00		
Collapse theorem							

Collapse theorem for QCPH

If for any $k \ge 1$, $QC\Pi_k = QC\Sigma_k$, then $QCPH = QC\Sigma_k$.

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion	
000	0000	0●0		00	00	
Collapse theorem						

Collapse theorem for QCPH

If for any
$$k \ge 1$$
, $QC\Pi_k = QC\Sigma_k$, then $QCPH = QC\Sigma_k$.

Lemma

If for any $k \ge 1$, $QC\Sigma_k = QC\Pi_k$, then for all $i \ge k$, $QC\Sigma_i = QC\Pi_i = QC\Sigma_k$.
Introduction 000	Results 0000	Quantum Karp-Lipton 0●0	Error Reduction	Lower Bounds 00	Conclusion 00
Lemma					
If for an	$hy \ k \ge 1, \ QC$	$\Sigma_k = \mathrm{QC}\Pi_k$, then for all	$ll \ i \ge k, \ QC\Sigma_i = Q$	$C\Pi_i = QC\Sigma_k.$	
Proof					

Proof by induction: Assume $QC\Sigma_i = QC\Pi_i = QC\Sigma_k$ for all $j \in \{k, ..., i-1\}$.

Introduction 000	Results 0000	Quantum Karp-Lipton ○●○	Error Reduction	Lower Bounds 00	Conclusior 00
Lem	na				
If for	r any $k \ge 1$, QCS	$C_k = QC\Pi_k$, then for all	$ll \ i \ge k, \ QC\Sigma_i = Q$	$C\Pi_i = QC\Sigma_k.$	
Proc	f.				

Proof by induction: Assume $QC\Sigma_j = QC\Pi_j = QC\Sigma_k$ for all $j \in \{k, ..., i-1\}$. Let $L = (L_{yes}, L_{no}) \in QC\Sigma_i$ with verifier V_n . Define $L' = (L'_{yes}, L'_{no})$:

ntrod 000	uction Ro	esults 000	Quantum Karp-Lipton 0●0	Error Reduction 0000	Lower Bounds 00	Conclusion 00
	Lemma					
	If for any $k \ge$	$\pm 1, QC\Sigma_k = 0$	$QC\Pi_k$, then for all $i \ge 1$	$k, QC\Sigma_i = QC\Pi_i$	$= \mathrm{QC}\Sigma_k.$	
	Proof.					
	Proof by indu	uction: Assum	ne $QC\Sigma_j = QC\Pi_j = Q$	$C\Sigma_k$ for all $j \in \{k, $, <i>i</i> – 1}. Let	
	$L = (L_{\rm yes}, L_{\rm no})$	$) \in \mathrm{QC}\Sigma_i$ wit	h verifier V_n . Define	$L' = (L'_{yes}, L'_{no})$:		
	L'_{y}	$_{\mathrm{es}}=\left\{ (x,y_{1})\ \right $	$\forall y_2 \exists y_3 \cdots Q_i y_i \colon \Pr[\forall$	$V_n(x, y_1, \dots, y_i) = 1$	$1] \ge 2/3 \big\}$	
	$L_{ m r}^{\prime}$	$y'_{no} = \{(x, y_1) \mid$	$\exists y_2 \forall y_3 \cdots \overline{Q_i} y_i \colon \Pr[$	$V_n(x, y_1, \dots, y_i) = 1$	$\lfloor \rfloor \le 1/3 \bigr\}$	

roduction 00	Results 0000	Quantum Karp-Lipton õ●0	Error Reduction	Lower Bounds 00	Conclus 00
Lemma					
If for an	$hy \ k \ge 1, \ QCY$	$E_k = QC\Pi_k$, then for a	$ll \ i \ge k, \ QC\Sigma_i = Q$	$C\Pi_i = QC\Sigma_k.$	
Proof.					
Proof b	y induction: /	Assume $QC\Sigma_j = QC\Pi_j$	$= QC\Sigma_k$ for all $j \in$	$\in \{k, \ldots, i-1\}$. Let	et
$L = (L_{yo})$	$_{\mathrm{es}}, L_{\mathrm{no}}) \in \mathrm{QCZ}$	Σ_i with verifier V_n . De	fine $L' = (L'_{yes}, L'_{no})$):	
	$L'_{\rm yes} = \big\{(x$	$(y_1) \mid \forall y_2 \exists y_3 \cdots Q_i y_i :$	$\Pr[V_n(x, y_1, \dots, y_n]]$	$(i_{i}) = 1] \ge 2/3$	
	$L'_{\rm no} = \left\{ (x_{\rm no}) \in X \right\}$	$(y_1) \mid \exists y_2 \forall y_3 \cdots \overline{Q_i} y_i:$	$\Pr[V_n(x, y_1, \dots, y_n]]$	$(i) = 1] \le 1/3$	
$L' \in \mathbf{Q}$	$QC\Pi_{i-1} = QCZ$	Σ_{i-1} . Thus there exists	V'_n s.t.		
		$(x,y_1)\in L'_{\rm yes} \Rightarrow \exists y_2 \forall$	$y_3 \cdots \overline{Q_i} y_i$: $\Pr[V'_n($	$[x, y_1, \ldots, y_i) = 1]$	$\geq 2/3$
		$(x,y_1)\in L'_{\rm no} \Rightarrow \forall y_2 \exists$	$y_3 \cdots Q_i y_i$: $\Pr[V'_n($	$[x, y_1, \dots, y_i) = 1]$	$\leq 1/3$

rod 00	roduction Results Quantum Karp-Lipton Error Reduction NO 0000 0€0 0000	n Lower Bounds Conclus 00 00
	Lemma	
	If for any $k \ge 1$, $QC\Sigma_k = QC\Pi_k$, then for all $i \ge k$, $QC\Sigma_k$	$_{i} = \mathrm{QC}\Pi_{i} = \mathrm{QC}\Sigma_{k}.$
	Proof.	
	Proof by induction: Assume $QC\Sigma_j = QC\Pi_j = QC\Sigma_k$ for $L = (L_{yes}, L_{no}) \in QC\Sigma_i$ with verifier V_n . Define $L' = (L'_{yes}, L_{no})$	all $j \in \{k, \dots, i-1\}$. Let $_{s}, L'_{no}$):
	$L'_{\text{yes}} = \left\{ (x, y_1) \mid \forall y_2 \exists y_3 \cdots Q_i y_i \colon \Pr[V_n(x, y_1, y_1)] \right\}$, y_i) = 1] ≥ 2/3}
	$L_{\rm no}' = \left\{ (x, y_1) \mid \exists y_2 \forall y_3 \cdots \overline{Q_i} y_i \colon \Pr[V_n(x, y_1, y_1)] \right\}$, y_i) = 1] $\leq 1/3$
	$L' \in QC\Pi_{i-1} = QC\Sigma_{i-1}$. Thus there exists V'_n s.t.	
	$(x, y_1) \in L'_{\text{yes}} \Rightarrow \exists y_2 \forall y_3 \cdots \overline{Q_i} y_i \colon H$	$\Pr[V'_n(x, y_1, \dots, y_i) = 1] \ge 2/3$
	$(x, y_1) \in L'_{\mathrm{no}} \Rightarrow \forall y_2 \exists y_3 \cdots Q_i y_i \colon \mathbb{H}$	$\Pr[V'_n(x, y_1, \dots, y_i) = 1] \le 1/3$
	$x \in L_{\text{yes}} \Rightarrow \exists y_1 \colon (x, y_1) \in L'_{\text{yes}} \Rightarrow \exists y_1 \exists y_2 \forall y_3 \cdots \overline{Q_i} y_i \colon \mathbb{F}$	$\Pr[V'_n(x, y_1, \dots, y_i) = 1] \ge 2/3$
	$x \in L_{\rm no} \Rightarrow \forall y_1 \colon (x, y_1) \in L'_{\rm no} \Rightarrow \forall y_1 \forall y_2 \exists y_3 \cdots Q_i y_i \colon \mathbb{R}$	$\Pr[V'_n(x, y_1, \dots, y_i) = 1] \le 1/3$

rod O	uction Results Quantum Karp-Lipton Error Reduction Lower Bounds 0000 000 000 000 000 00	00
	Lemma	
	If for any $k \ge 1$, $QC\Sigma_k = QC\Pi_k$, then for all $i \ge k$, $QC\Sigma_i = QC\Pi_i = QC\Sigma_k$.	
	Proof.	
	Proof by induction: Assume $QC\Sigma_j = QC\Pi_j = QC\Sigma_k$ for all $j \in \{k,, i-1\}$. Let $L = (L_{yes}, L_{no}) \in QC\Sigma_i$ with verifier V_n . Define $L' = (L'_{yes}, L'_{no})$:	
	$L'_{\text{yes}} = \left\{ (x, y_1) \mid \forall y_2 \exists y_3 \cdots Q_i y_i \colon \Pr[V_n(x, y_1, \dots, y_i) = 1] \ge 2/3 \right\}$	
	$L_{\rm no}' = \left\{ (x, y_1) \mid \exists y_2 \forall y_3 \cdots \overline{Q_i} y_i \colon \Pr[V_n(x, y_1, \dots, y_i) = 1] \le 1/3 \right\}$	
	$L' \in QC\Pi_{i-1} = QC\Sigma_{i-1}$. Thus there exists V'_n s.t.	
	$(x,y_1) \in L'_{\mathrm{yes}} \Rightarrow \exists y_2 \forall y_3 \cdots \overline{Q_i} y_i \colon \Pr[V'_n(x,y_1,\ldots,y_i) = 1] \ge 2/2$	3
	$(x,y_1)\in L_{\rm no}' \Rightarrow \forall y_2 \exists y_3 \cdots Q_i y_i \colon \Pr[V_n'(x,y_1,\ldots,y_i)=1] \leq 1/2$	3
	$x \in L_{\mathrm{yes}} \Rightarrow \exists y_1 \colon (x, y_1) \in L_{\mathrm{yes}}' \Rightarrow \exists y_1 \exists y_2 \forall y_3 \cdots \overline{Q_i} y_i \colon \Pr[V_n'(x, y_1, \dots, y_i) = 1] \ge 2/2$	3
	$x \in L_{\rm no} \Rightarrow \forall y_1 \colon (x, y_1) \in L'_{\rm no} \Rightarrow \forall y_1 \forall y_2 \exists y_3 \cdots Q_i y_i \colon \Pr[V'_n(x, y_1, \dots, y_i) = 1] \le 1/2$	3
	Hence, $L \in QC\Sigma_{i-1}$.	

Introduction 000	Results 0000	Quantum Karp-Lipton õo●	Error Reduction	Lower Bounds 00	Conclusio 00
Karp-L	ipton theorem	for QCPH			
If QCM	$A \subseteq BQP_{/\mathrm{mpo}}$	$_{\rm ly}$, then QCPH = QC Σ	$C_2 = QC\Pi_2.$		
Proof s	ketch.				
• Let I	$L = (L_{\rm yes}, L_{\rm no})$	$\in \mathrm{QC}\Pi_2$ with verifier	V_n and negligible	error ϵ .	

ntrodu 200	ction Results 0000	Quantum Karp-Lipton 00●	Error Reduction	Lower Bounds 00	Conclusio OO
	Karp-Lipton theore	m for QCPH			
	$\mathit{If} QCMA \subseteq BQP_{/m}$	$_{\rm poly'}$ then QCPH = QCX	$\Sigma_2 = QC\Pi_2.$		
l	Proof sketch.				
• Let $L = (L_{\text{ves}}, L_{\text{no}}) \in \text{QC}\Pi_2$ with verifier V_n and negligible error ϵ .					
	• Need to show <i>L</i>	$\in QC\Sigma_2$. Define verifier	$V'_n(x, C, y_1) := V_n$	$(x, y_1, C(x, y_1))$:	
	• V_n' takes in	quantum circuit C, com	putes $y_2 = C(x, y_1)$,	and runs $V_n(x, y)$	$_{1}, y_{2}).$

ntrodu 000	ction Results 0000	Quantum Karp-Lipton 00●	Error Reduction 0000	Lower Bounds 00	Conclusio 00	
	Karp-Lipton theorer	n for QCPH				
	$\mathit{If} QCMA \subseteq BQP_{/mp}$	$_{ooly'}$ then QCPH = QC Σ	$L_2 = QC\Pi_2.$			
	Proof sketch.					
	• Let $L = (L_{\text{ves}}, L_{\text{no}}) \in \text{QC}\Pi_2$ with verifier V_n and negligible error ϵ .					
	• Need to show $L \in$	$QC\Sigma_2$. Define verifier	$V'_n(x, C, y_1) := V_n$	$(x, y_1, C(x, y_1))$:		
	• If $x \in L_{no}$, then $\exists y \in C \exists y_1 \colon \Pr[V'_n(x)]$	$ \begin{aligned} y_1 \forall y_2 \colon & \Pr[V_n(x, y_1, y_2) \\ & C, y_1) = 1] \leq \epsilon. \end{aligned} $	$= 1] \leq \epsilon$. Thus,			

ntroduc 000	tion Results 0000	Quantum Karp-Lipton 00●	Error Reduction 0000	Lower Bounds 00	Conclusic 00		
	Karp-Lipton theorem	for QCPH					
If QCMA \subseteq BQP _{/mpoly} , then QCPH = QC Σ_2 = QC Π_2 .							
	Proof sketch.						
	• Let $L = (L_{\text{yes}}, L_{\text{no}})$	$\in \mathrm{QC}\Pi_2$ with verifier	V _n and negligible	error ϵ .			
	• Need to show $L \in$	$QC\Sigma_2$. Define verifier	$V'_n(x, C, y_1) := V_n$	$(x, y_1, C(x, y_1))$:			
	• If $x \in L_{no}$, then $\exists y \\ \forall C \exists y_1 \colon \Pr[V'_n(x, y)]$	$ \begin{aligned} & y_1 \forall y_2 \colon \Pr[V_n(x, y_1, y_2) \\ & C, y_1) = 1] \leq \epsilon. \end{aligned} $	$= 1] \leq \epsilon$. Thus,				

• If $x \in L_{yes}$, given y_1 , the problem of finding y_2 s.t. $V_n(x, y_1, y_2)$ accepts, is in QCMA.

trodu 00	uction Results 0 0000 0	Quantum Karp-Lipton 00●	Error Reduction 0000	Lower Bounds 00	Conclusio 00
	Karp-Lipton theorem for Q	СРН			
	If $QCMA \subseteq BQP_{/mpoly'}$ the	en QCPH = QCM	$\Sigma_2 = QC\Pi_2.$		
ļ	Proof sketch.				
	• Let $L = (L_{yes}, L_{no}) \in QC$	Π_2 with verifier	V_n and negligible	error ϵ .	
	• Need to show $L \in QC\Sigma_2$. Define verifier	$V'_n(x, C, y_1) := V_n$	$(x, y_1, C(x, y_1))$:	
	• If $x \in L_{no}$, then $\exists y_1 \forall y_2$: $\forall C \exists y_1$: $\Pr[V'_n(x, C, y_1)]$	$\Pr[V_n(x, y_1, y_2)] = 1] \le \epsilon.$	$)=1]\leq\epsilon.$ Thus,		
	• If $x \in L_{yes}$, given y_1 , the	problem of findi	ng y_2 s.t. $V_n(x, y_1, y_2)$	y_2) accepts, is in (QCMA.
	• Use randomized reduction	on from QCMA t	o UQCMA [Aharon	ov, Ben-Or, Brand	lão,

Sattah, 2022] to compute instance $\phi_{(x,y_1)}$ with unique witness. By QCMA \subseteq BQP_{/mpolv}, \exists circuit \tilde{C} deciding $\phi_{(x,y_1)}$.

troduction 00	Results 0000	Quantum Karp-Lipton õõ●	Error Reduction 0000	Lower Bounds 00	Conclusio 00
Karp-Li	pton theorem	for QCPH			
If QCM	$A \subseteq BQP_{/mpd}$	$_{\rm oby}$, then QCPH = QC Σ	$L_2 = QC\Pi_2.$		
Proof sl	ketch.				
• Let L	$= (L_{\rm ves}, L_{\rm no})$	$\in \mathrm{QC}\Pi_2$ with verifier V	V_n and negligible	error ϵ .	
• Need	to show $L \in$	$QC\Sigma_2$. Define verifier	$V'_n(x, C, y_1) := V_n$	$(x, y_1, C(x, y_1))$:	
• If $x \in \forall C \exists y$	L_{no} , then $\exists y_1$: $\Pr[V'_n(x, y_n)]$	$ \begin{aligned} & $	$= 1] \leq \epsilon$. Thus,		
• If $x \in$	$L_{\rm ves}$, given y	1, the problem of findir	y_{2} s.t. $V_{n}(x, y_{1}, y_{2})$	y_2) accepts, is in (QCMA.

- Use randomized reduction from QCMA to UQCMA [ABBS22] to compute instance $\phi_{(x,y_1)}$ with unique witness. By QCMA \subseteq BQP_{/mpoly}, \exists circuit \tilde{C} deciding $\phi_{(x,y_1)}$.
- Apply search-to-decision reduction of [Irani, Natarajan, Nirkhe, Rao, Yuen, 2022] to construct circuit *C* that finds the unique witness for $\phi_{(x,y_1)}$:

$$\mathrm{Pr}_{y_2\leftarrow C(x,y_1)}[V_n(x,y_1,y_2)=1]\geq 1/\operatorname{poly}.$$

ntrodu 100	uction Results Quantum 0000 00●	Karp-Lipton Error 0000	Reduction	Lower Bounds 00	Conclusio 00
	Karp-Lipton theorem for QCPH				
	If $QCMA \subseteq BQP_{/mpoly'}$ then $QCMA \subseteq BQP_{/mpoly'}$	$CPH = QC\Sigma_2 = QCI$	Т ₂ .		
ļ	Proof sketch.				
	• Let $L = (L_{\text{yes}}, L_{\text{no}}) \in \text{QC}\Pi_2$ w	ith verifier V_n and m	egligible erro	r <i>ε</i> .	
	• Need to show $L \in QC\Sigma_2$. De	fine verifier $V'_n(x, C,$	$(y_1) := V_n(x, y)$	$(y_1, C(x, y_1))$:	
	• If $x \in L_{no}$, then $\exists y_1 \forall y_2$: $\Pr[\forall \forall C \exists y_1 : \Pr[V'_n(x, C, y_1) = 1]$	$V_n(x, y_1, y_2) = 1] \le \epsilon$ $\le \epsilon.$	e. Thus,		
	• If $x \in L_{yes}$, given y_1 , the prob	em of finding y_2 s.t.	$V_n(x, y_1, y_2)$ is	accepts, is in QCN	ЛA.

- Use randomized reduction from QCMA to UQCMA [ABBS22] to compute instance $\phi_{(x,y_1)}$ with unique witness. By QCMA \subseteq BQP_{/mpoly}, \exists circuit \tilde{C} deciding $\phi_{(x,y_1)}$.
- Apply search-to-decision reduction of [INNRY22] to construct circuit *C* that finds the unique witness for $\phi_{(x,y_1)}$: $\Pr_{y_2 \leftarrow C(x,y_1)}[V_n(x, y_1, y_2) = 1] \ge 1/$ poly.
- $\exists C \forall y_1 \colon \Pr[V'_n(x, C, y_1) = 1] \ge 1/\text{ poly.}$

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
			0000		

Introduction

3 Quantum Karp-Lipton

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		00	00
Asymmetric	Product T	est (APT)			

Recall, for $L \in \text{pureQ}\Pi_i$ (*i* even), there exist c, s with $c - s \ge 1/\text{ poly s.t.}$

Introduction Results Quantum Karp-Lipton Error Reduction Lower Bounds Conclusion Asymmetric Product Test (APT)

Recall, for $L \in \text{pureQ}\Pi_i$ (*i* even), there exist c, s with $c - s \ge 1/\text{ poly s.t.}$ • $x \in L_{\text{yes}} \Rightarrow \forall |\psi_1\rangle \exists |\psi_2\rangle \cdots \exists |\psi_i\rangle$: $\Pr[V(|x, \psi_1, \dots, \psi_i\rangle) = 1] \ge c$ • $x \in L_{\text{no}} \Rightarrow \exists |\psi_1\rangle \forall |\psi_2\rangle \cdots \forall |\psi_i\rangle$: $\Pr[V(|x, \psi_1, \dots, \psi_i\rangle) = 1] \le s$

Introduction
OCOResults
OCOQuantum Karp-Lipton
OCOError Reduction
OCOLower Bounds
OCOConclusion
OCOAsymmetric Product Test (APT)

Recall, for $L \in \text{pureQ}\Pi_i$ (*i* even), there exist c, s with $c - s \ge 1/\text{ poly s.t.}$ • $x \in L_{\text{yes}} \Rightarrow \forall |\psi_1\rangle \exists |\psi_2\rangle \cdots \exists |\psi_i\rangle$: $\Pr[V(|x, \psi_1, \dots, \psi_i\rangle) = 1] \ge 1 - 1/\exp$ • $x \in L_{\text{no}} \Rightarrow \exists |\psi_1\rangle \forall |\psi_2\rangle \cdots \forall |\psi_i\rangle$: $\Pr[V(|x, \psi_1, \dots, \psi_i\rangle) = 1] \le 1/\exp$

• Could do "majority voting" if we get poly(n) copies of each state.

Introduction Results Quantum Karp-Lipton Error Reduction Lower Bounds Conclusion Asymmetric Product Test (APT)

Recall, for $L \in \text{pure}Q\Pi_i$ (*i* even), there exist c, s with $c - s \ge 1/\text{ poly s.t.}$

- $x \in L_{\text{yes}} \Rightarrow \forall |\psi_1\rangle \exists |\psi_2\rangle \cdots \exists |\psi_i\rangle$: $\Pr[V(|x, \psi_1, \dots, \psi_i\rangle) = 1] \ge 1 1/\exp(|\psi_1\rangle |\psi_1\rangle)$
- $x \in L_{no} \Rightarrow \exists |\psi_1\rangle \forall |\psi_2\rangle \cdots \forall |\psi_i\rangle$: $\Pr[V(|x, \psi_1, \dots, \psi_i\rangle) = 1] \le 1 1/\text{ poly}$
- Could do "majority voting" if we get poly(n) copies of each state.
- If the last proof $|\psi_i\rangle$ contains copies of all previous states, then we can still do majority voting. Verify this with the APT!

Introduction Results Quantum Karp-Lipton Error Reduction Lower Bounds Conclusion Asymmetric Product Test (APT)

Recall, for $L \in \text{pure}Q\Pi_i$ (*i* even), there exist c, s with $c - s \ge 1/\text{ poly s.t.}$

- $x \in L_{\text{yes}} \Rightarrow \forall |\psi_1\rangle \exists |\psi_2\rangle \cdots \exists |\psi_i\rangle$: $\Pr[V(|x, \psi_1, \dots, \psi_i\rangle) = 1] \ge 1 1/\exp(|\psi_1\rangle |\psi_1\rangle)$
- $x \in L_{no} \Rightarrow \exists |\psi_1\rangle \forall |\psi_2\rangle \cdots \forall |\psi_i\rangle$: $\Pr[V(|x, \psi_1, \dots, \psi_i\rangle) = 1] \le 1 1/\text{ poly}$
- Could do "majority voting" if we get poly(n) copies of each state.
- If the last proof $|\psi_i\rangle$ contains copies of all previous states, then we can still do majority voting. Verify this with the APT!
- We construct new "asymmetric version" of the product test [Mintert, Kuś, Buchleitner, 2005] [Harrow, Montanaro, 2012]

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		00	00
APT					

- Register A: $|\psi\rangle = |\psi_1\rangle \otimes \cdots \otimes |\psi_n\rangle$ with $|\psi_i\rangle \in \mathbb{C}^{d_i}$
- Register *B*: $|\phi\rangle \in \mathbb{C}^{(d:=d_1 \cdots d_n)^m}$ (*m* copies of $|\psi\rangle$)

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		00	00
APT					

- Register A: $|\psi\rangle = |\psi_1\rangle \otimes \cdots \otimes |\psi_n\rangle$ with $|\psi_i\rangle \in \mathbb{C}^{d_i}$
- Register *B*: $|\phi\rangle \in \mathbb{C}^{(d:=d_1\cdots d_n)^m}$ (*m* copies of $|\psi\rangle$)
- **②** Choose $(i, j) \in [n] \times [m]$ uniformly at random.

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		00	00
APT					

- Register A: $|\psi\rangle = |\psi_1\rangle \otimes \cdots \otimes |\psi_n\rangle$ with $|\psi_i\rangle \in \mathbb{C}^{d_i}$
- Register *B*: $|\phi\rangle \in \mathbb{C}^{(d:=d_1 \cdots d_n)^m}$ (*m* copies of $|\psi\rangle$)
- ② Choose $(i, j) \in [n] \times [m]$ uniformly at random.
- Run SWAP test between *i*-th register of A and its *j*-th copy in B.

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000	00●0	00	00
APT					

- Register A: $|\psi\rangle = |\psi_1\rangle \otimes \cdots \otimes |\psi_n\rangle$ with $|\psi_i\rangle \in \mathbb{C}^{d_i}$
- Register *B*: $|\phi\rangle \in \mathbb{C}^{(d:=d_1 \cdots d_n)^m}$ (*m* copies of $|\psi\rangle$)
- Oboose $(i, j) \in [n] \times [m]$ uniformly at random.
- Run SWAP test between *i*-th register of A and its *j*-th copy in B.

Lemma

Let
$$|\phi\rangle_{BC} \in \mathbb{C}^{d^m} \otimes \mathbb{C}^{d'}$$
 for some $d' > 0$ s.t.

$$\max_{\substack{|\psi\rangle:=|\psi_1\rangle\otimes\cdots\otimes|\psi_n\rangle\in\mathbb{C}^d}} \langle \phi|_{BC}[(|\psi\rangle\langle\psi|^{\otimes m})_B\otimes I_C]|\phi\rangle_{BC} = 1 - \epsilon$$
for $\epsilon \ge 0$.

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		00	00
APT					

- Register A: $|\psi\rangle = |\psi_1\rangle \otimes \cdots \otimes |\psi_n\rangle$ with $|\psi_i\rangle \in \mathbb{C}^{d_i}$
- Register *B*: $|\phi\rangle \in \mathbb{C}^{(d:=d_1\cdots d_n)^m}$ (*m* copies of $|\psi\rangle$)
- ② Choose $(i, j) \in [n] \times [m]$ uniformly at random.
- Run SWAP test between *i*-th register of A and its *j*-th copy in B.

Lemma

 $\begin{array}{l} \text{Let } |\phi\rangle_{BC} \in \mathbb{C}^{d^{m}} \otimes \mathbb{C}^{d'} \text{ for some } d' > 0 \text{ s.t.} \\ & \max_{|\psi\rangle:=|\psi_{1}\rangle\otimes\cdots\otimes|\psi_{n}\rangle\in\mathbb{C}^{d}} \quad \langle \phi|_{BC}[(|\psi\rangle\langle\psi|^{\otimes m})_{B}\otimes I_{C}]|\phi\rangle_{BC} = 1 - \epsilon \\ \text{for } \epsilon \geq 0. \text{ Then, } APT \text{ accepts } |\eta\rangle_{ABC} := |\psi\rangle_{A} \otimes |\phi\rangle_{BC} \text{ w.p. } \leq 1 - \epsilon/2mn \text{ for all } |\psi\rangle. \end{array}$

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		00	00
One-sided	Error Re	eduction			

Let *i* be even,
$$c - s \ge 1/p(n)$$
. Then

$$pureQ\Pi_i(c, s) \subseteq pureQ\Pi_i^{SEP}\left(1 - \frac{1}{e^n}, 1 - \frac{1}{np(n)^2}\right).$$

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		00	00
One-sided	Error R	eduction			

Let *i* be even,
$$c - s \ge 1/p(n)$$
. Then

$$pureQ\Pi_i(c, s) \subseteq pureQ\Pi_i^{SEP}\left(1 - \frac{1}{e^n}, 1 - \frac{1}{np(n)^2}\right).$$

• Let V be be a verifier for $L \in \text{pure}Q\Pi_i(c, s)$ s.t.

000	0000	000	0000	00	00
One-sided	Error Red	uction			

et i be even,
$$c - s \ge 1/p(n)$$
. Then
pure $Q\Pi_i(c, s) \subseteq pure Q\Pi_i^{SEP}\left(1 - \frac{1}{e^n}, 1 - \frac{1}{np(n)^2}\right)$.

- Let V be be a verifier for $L \in \text{pure}Q\Pi_i(c, s)$ s.t.
- Verifier $V'((|\psi_1\rangle \otimes \cdots \otimes |\psi_{i-1}\rangle)_A \otimes |\psi'_i\rangle_{BC}$ with $|\psi'_i\rangle = (|\psi_1\rangle \otimes \cdots \otimes |\psi_{i-1}\rangle)_B^{\otimes m} \otimes |\psi_i\rangle_C^{\otimes m}$ (for honest last prover). Do with probability 1/2:

000	0000	000	0000	00	00
One-sided	Error Red	uction			

1

et i be even,
$$c - s \ge 1/p(n)$$
. Then
pureQ $\Pi_i(c, s) \subseteq \text{pureQ}\Pi_i^{\text{SEP}}\left(1 - \frac{1}{e^n}, 1 - \frac{1}{np(n)^2}\right)$.

- Let V be be a verifier for $L \in \text{pure}Q\Pi_i(c,s)$ s.t.
- Verifier $V'((|\psi_1\rangle \otimes \cdots \otimes |\psi_{i-1}\rangle)_A \otimes |\psi'_i\rangle_{BC}$ with $|\psi'_i\rangle = (|\psi_1\rangle \otimes \cdots \otimes |\psi_{i-1}\rangle)_B^{\otimes m} \otimes |\psi_i\rangle_C^{\otimes m}$ (for honest last prover). Do with probability 1/2:
 - Apply APT between *A* and *B*.

Introduction	Results 0000	Quantum Karp-Lipton 000	OOO	Lower Bounds OO	00
One-sided	Error R	eduction			

Let *i* be even,
$$c - s \ge 1/p(n)$$
. Then
pureQ $\Pi_i(c, s) \subseteq \text{pureQ}\Pi_i^{\text{SEP}}\left(1 - \frac{1}{e^n}, 1 - \frac{1}{np(n)^2}\right)$

- Let V be be a verifier for $L \in \text{pure}Q\Pi_i(c,s)$ s.t.
- Verifier $V'((|\psi_1\rangle \otimes \cdots \otimes |\psi_{i-1}\rangle)_A \otimes |\psi'_i\rangle_{BC})$ with $|\psi'_i\rangle = (|\psi_1\rangle \otimes \cdots \otimes |\psi_{i-1}\rangle)_B^{\otimes m} \otimes |\psi_i\rangle_C^{\otimes m}$ (for honest last prover). Do with probability 1/2:
 - Apply APT between *A* and *B*.
 - **②** Run original verifier V verifier on all *m* copies of $|\psi_1\rangle, \ldots, |\psi_i\rangle$ inside *B*, *C* and accept if at least (c + s)/2 runs accept.

000	0000	000	0000	00	00
One-sided	Error Red	uction			

Let *i* be even,
$$c - s \ge 1/p(n)$$
. Then
pureQ $\Pi_i(c, s) \subseteq \text{pureQ}\Pi_i^{\text{SEP}}\left(1 - \frac{1}{e^n}, 1 - \frac{1}{np(n)^2}\right)$

- Let V be be a verifier for $L \in \text{pure}Q\Pi_i(c, s)$ s.t.
- Verifier $V'((|\psi_1\rangle \otimes \cdots \otimes |\psi_{i-1}\rangle)_A \otimes |\psi'_i\rangle_{BC})$ with $|\psi'_i\rangle = (|\psi_1\rangle \otimes \cdots \otimes |\psi_{i-1}\rangle)_B^{\otimes m} \otimes |\psi_i\rangle_C^{\otimes m}$ (for honest last prover). Do with probability 1/2:
 - Apply APT between *A* and *B*.
 - **②** Run original verifier V verifier on all *m* copies of $|\psi_1\rangle, \ldots, |\psi_i\rangle$ inside *B*, *C* and accept if at least (c + s)/2 runs accept.
- Note that APT also bounds entanglement between *B*, *C*.

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		●0	OO

Introduction

- Ouantum Karp-Lipton
- Error Reduction

Introduction 000	Results 0000	Quantum Karp-Lipton 000	Error Reduction	Lower Bounds ⊙●	Conclusion 00
QCPH ⊆ p	oureQPH				

For all even $k \ge 2$, $QC\Pi_k \subseteq pureQ\Pi_k$.

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		⊙●	00
QCPH ⊆ pι	ıreQPH				

```
For all even k \ge 2, QC\Pi_k \subseteq pureQ\Pi_k.
```

• Let V be be a verifier for $L \in QC\Pi_k$ s.t.

Introduction 000	Results 0000	Quantum Karp-Lipton 000	Error Reduction	Lower Bounds	Conclusion 00
QCPH ⊆ pι	ureQPH				

For all even $k \ge 2$, $QC\Pi_k \subseteq pureQ\Pi_k$.

• Let V be be a verifier for $L \in QC\Pi_k$ s.t.

•
$$x \in L_{\text{yes}} \Rightarrow \forall y_1 \cdots \exists y_k$$
: $\Pr[V(x, y_1, \dots, y_k) = 1] \ge 1 - 1/\exp$
• $x \in L_{\text{no}} \Rightarrow \exists y_1 \cdots \forall y_k$: $\Pr[V(x, y_1, \dots, y_k) = 1] \le 1/\exp$

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		⊙●	00
$QCPH \subseteq p$	ureQPH				

For all even $k \ge 2$, $QC\Pi_k \subseteq pureQ\Pi_k$.

- Let V be be a verifier for $L \in QC\Pi_k$ s.t.
 - $x \in L_{yes} \Rightarrow \forall y_1 \cdots \exists y_k$: $\Pr[V(x, y_1, \dots, y_k) = 1] \ge 1 1 / \exp$ • $x \in L_{ro} \Rightarrow \exists y_1 \cdots \forall y_k$: $\Pr[V(x, y_1, \dots, y_k) = 1] \le 1 / \exp$
- Define pure $Q\Pi_k$ verifier $V'(|x\rangle \otimes |\psi_1\rangle \otimes \cdots \otimes |\psi_{k-1}\rangle \otimes |\psi'_k\rangle$. Last proof $|\psi'_k\rangle = (|\psi_1\rangle \otimes \cdots \otimes |\psi_{k-1}\rangle)_B^{\otimes m} \otimes |\psi_k\rangle_C$ (honest prover).

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		⊙●	00
QCPH ⊆ pι	ureQPH				

For all even $k \ge 2$, $QC\Pi_k \subseteq pureQ\Pi_k$.

- Let V be be a verifier for $L \in QC\Pi_k$ s.t.
 - $x \in L_{yes} \Rightarrow \forall y_1 \cdots \exists y_k$: $\Pr[V(x, y_1, \dots, y_k) = 1] \ge 1 1 / \exp$ • $x \in L_{po} \Rightarrow \exists y_1 \cdots \forall y_k$: $\Pr[V(x, y_1, \dots, y_k) = 1] \le 1 / \exp$
- Define pure $Q\Pi_k$ verifier $V'(|x\rangle \otimes |\psi_1\rangle \otimes \cdots \otimes |\psi_{k-1}\rangle \otimes |\psi'_k\rangle$. Last proof $|\psi'_k\rangle = (|\psi_1\rangle \otimes \cdots \otimes |\psi_{k-1}\rangle)_B^{\otimes m} \otimes |\psi_k\rangle_C$ (honest prover). Do with probability 1/2: • Run APT between A (i.e. $|\psi_1\rangle \otimes \cdots \otimes |\psi_{k-1}\rangle$) and B.
| Introduction | Results | Quantum Karp-Lipton | Error Reduction | Lower Bounds | Conclusion |
|--------------|---------|---------------------|-----------------|--------------|------------|
| 000 | 0000 | 000 | | ⊙● | 00 |
| QCPH ⊆ p | ureQPH | | | | |

Lemma

For all even $k \ge 2$, $QC\Pi_k \subseteq pureQ\Pi_k$.

- Let V be be a verifier for $L \in QC\Pi_k$ s.t.
 - $x \in L_{\text{yes}} \Rightarrow \forall y_1 \cdots \exists y_k \colon \Pr[V(x, y_1, \dots, y_k) = 1] \ge 1 1 / \exp[V(x, y_1, \dots, y_k)]$
 - $x \in L_{no} \Rightarrow \exists y_1 \cdots \forall y_k \colon \Pr[V(x, y_1, \dots, y_k) = 1] \le 1/\exp(1)$
- Define pure $Q\Pi_k$ verifier $V'(|x\rangle \otimes |\psi_1\rangle \otimes \cdots \otimes |\psi_{k-1}\rangle \otimes |\psi'_k\rangle$. Last proof $|\psi'_k\rangle = (|\psi_1\rangle \otimes \cdots \otimes |\psi_{k-1}\rangle)^{\otimes m}_B \otimes |\psi_k\rangle_C$ (honest prover). Do with probability 1/2:
 - Run APT between A (i.e. $|\psi_1\rangle \otimes \cdots \otimes |\psi_{k-1}\rangle$) and B.
 - Measure all proofs in standard basis and denote the outcomes by y_1, \ldots, y_k and $y_{i,j}$ for the *j*-th copy of *i*.

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		⊙●	00
QCPH ⊆ p	ureQPH				

Lemma

For all even $k \ge 2$, $QC\Pi_k \subseteq pureQ\Pi_k$.

- Let V be be a verifier for $L \in QC\Pi_k$ s.t.
 - $x \in L_{\text{yes}} \Rightarrow \forall y_1 \cdots \exists y_k \colon \Pr[V(x, y_1, \dots, y_k) = 1] \ge 1 1 / \exp[V(x, y_1, \dots, y_k)]$
 - $x \in L_{no} \Rightarrow \exists y_1 \cdots \forall y_k \colon \Pr[V(x, y_1, \dots, y_k) = 1] \le 1/\exp(1)$
- Define pure $Q\Pi_k$ verifier $V'(|x\rangle \otimes |\psi_1\rangle \otimes \cdots \otimes |\psi_{k-1}\rangle \otimes |\psi'_k\rangle$. Last proof $|\psi'_k\rangle = (|\psi_1\rangle \otimes \cdots \otimes |\psi_{k-1}\rangle)^{\otimes m}_B \otimes |\psi_k\rangle_C$ (honest prover). Do with probability 1/2:
 - Run APT between A (i.e. $|\psi_1\rangle \otimes \cdots \otimes |\psi_{k-1}\rangle$) and B.
 - Measure all proofs in standard basis and denote the outcomes by y_1, \ldots, y_k and $y_{i,j}$ for the *j*-th copy of *i*.
 - If there exists i, j s.t. $y_i \neq y_{i,j}$, reject if i is even (\exists), accept if i is odd (\forall).

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		⊙●	00
QCPH ⊆ p	ureQPH				

Lemma

For all even $k \ge 2$, $QC\Pi_k \subseteq pureQ\Pi_k$.

- Let V be be a verifier for $L \in QC\Pi_k$ s.t.
 - $x \in L_{\text{yes}} \Rightarrow \forall y_1 \cdots \exists y_k \colon \Pr[V(x, y_1, \dots, y_k) = 1] \ge 1 1 / \exp[V(x, y_1, \dots, y_k)]$
 - $x \in L_{no} \Rightarrow \exists y_1 \cdots \forall y_k \colon \Pr[V(x, y_1, \dots, y_k) = 1] \le 1/\exp(1)$
- Define pure $Q\Pi_k$ verifier $V'(|x\rangle \otimes |\psi_1\rangle \otimes \cdots \otimes |\psi_{k-1}\rangle \otimes |\psi'_k\rangle$. Last proof $|\psi'_k\rangle = (|\psi_1\rangle \otimes \cdots \otimes |\psi_{k-1}\rangle)^{\otimes m}_B \otimes |\psi_k\rangle_C$ (honest prover). Do with probability 1/2:
 - Run APT between A (i.e. $|\psi_1\rangle \otimes \cdots \otimes |\psi_{k-1}\rangle$) and B.
 - Measure all proofs in standard basis and denote the outcomes by y_1, \ldots, y_k and $y_{i,j}$ for the *j*-th copy of *i*.
 - If there exists i, j s.t. $y_i \neq y_{i,j}$, reject if i is even (\exists), accept if i is odd (\forall).
 - Otherwise, run $V(x, y_1, \dots, y_k)$.

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		00	●O

Introduction

2 Results

- 3 Quantum Karp-Lipton
- Interpretation
 Interpretation
- **5** Lower Bounds

Introduction 000	Results 0000	Quantum Karp-Lipton 000	Error Reduction	Lower Bounds 00	Conclusion
Open Que	estions				

• Toda's theorem for QCPH, i.e., $QCPH \subseteq P^{PP}$?

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		00	OO
Open Que	stions				

- Toda's theorem for QCPH, i.e., $QCPH \subseteq P^{PP}$?
 - [GSSSY22] shows QCPH $\subseteq P^{PP^{PP}}$.

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		00	⊙●
Open Oue	stions				

- Toda's theorem for QCPH, i.e., QCPH $\subseteq P^{PP}$?
 - [GSSSY22] shows QCPH $\subseteq P^{PP^{PP}}$.
 - Otherwise, oracle separation?

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		00	⊙●
Open Que	stions				

- Toda's theorem for QCPH, i.e., QCPH $\subseteq P^{PP}$?
 - [GSSSY22] shows QCPH $\subseteq P^{PP^{PP}}$.
 - Otherwise, oracle separation?
- Is pureQPH \subseteq QPH?

Introduction	Results	Quantum Karp–Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		00	○●
Open Oues	stions				

- Toda's theorem for QCPH, i.e., QCPH $\subseteq P^{PP}$?
 - [GSSSY22] shows QCPH $\subseteq P^{PP^{PP}}$.
 - Otherwise, oracle separation?
- Is pureQPH \subseteq QPH?
- Error reduction for QPH?

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		00	⊙●
Open Ou	estions				

- Toda's theorem for QCPH, i.e., QCPH $\subseteq P^{PP}$?
 - [GSSSY22] shows QCPH $\subseteq P^{PP^{PP}}$
 - Otherwise, oracle separation?
- Is pureQPH \subseteq QPH?
- Error reduction for QPH?
- Two-sided error reduction for pureQPH?

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		00	⊙●
Open Ou	estions				

- Toda's theorem for QCPH, i.e., QCPH $\subseteq P^{PP}$?
 - [GSSSY22] shows QCPH $\subseteq P^{PP^{PP}}$
 - Otherwise, oracle separation?
- Is pureQPH \subseteq QPH?
- Error reduction for QPH?
- Two-sided error reduction for pureQPH?
- Collapse theorem for QPH/pureQPH?

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		00	⊙●
Open Qu	estions				

- Toda's theorem for QCPH, i.e., $QCPH \subseteq P^{PP}$?
 - [GSSSY22] shows QCPH $\subseteq P^{PP^{PP}}$
 - Otherwise, oracle separation?
- Is pureQPH \subseteq QPH?
- Error reduction for QPH?
- Two-sided error reduction for pureQPH?
- Collapse theorem for QPH/pureQPH?
- Evidence that QCPH/QPH/pureQPH don't collapse?

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		00	⊙●
Open Qu	estions				

- Toda's theorem for QCPH, i.e., $QCPH \subseteq P^{PP}$?
 - [GSSSY22] shows QCPH $\subseteq P^{PP^{PP}}$
 - Otherwise, oracle separation?
- Is pureQPH \subseteq QPH?
- Error reduction for QPH?
- Two-sided error reduction for pureQPH?
- Collapse theorem for QPH/pureQPH?
- Evidence that QCPH/QPH/pureQPH *don't* collapse?
- Improve pureQPH \subseteq EXP^{PP}. Is pureQ $\Sigma_3 \subseteq$ NEXP?

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		00	⊙●
Open Qu	estions				

- Toda's theorem for QCPH, i.e., $QCPH \subseteq P^{PP}$?
 - [GSSSY22] shows QCPH $\subseteq P^{PP^{PP}}$
 - Otherwise, oracle separation?
- Is pureQPH \subseteq QPH?
- Error reduction for QPH?
- Two-sided error reduction for pureQPH?
- Collapse theorem for QPH/pureQPH?
- Evidence that QCPH/QPH/pureQPH *don't* collapse?
- Improve pureQPH \subseteq EXP^{PP}. Is pureQ $\Sigma_3 \subseteq$ NEXP?
 - [GSSSY22] shows $Q\Sigma_3 \subseteq NEXP$: Guess $|\psi_1\rangle$ and use $Q\Pi_2 \subseteq EXP$.

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		00	⊙●
Open Qu	estions				

- Toda's theorem for QCPH, i.e., QCPH $\subseteq P^{PP}$?
 - [GSSSY22] shows QCPH $\subseteq P^{PP^{PP}}$
 - Otherwise, oracle separation?
- Is pureQPH \subseteq QPH?
- Error reduction for QPH?
- Two-sided error reduction for pureQPH?
- Collapse theorem for QPH/pureQPH?
- Evidence that QCPH/QPH/pureQPH don't collapse?
- Improve pureQPH \subseteq EXP^{PP}. Is pureQ $\Sigma_3 \subseteq$ NEXP?
 - [GSSSY22] shows $Q\Sigma_3 \subseteq NEXP$: Guess $|\psi_1\rangle$ and use $Q\Pi_2 \subseteq EXP$.
 - Even $pureQ\Pi_2 \in NEXP$ remains open.

Introduction	Results	Quantum Karp-Lipton	Error Reduction	Lower Bounds	Conclusion
000	0000	000		00	⊙●
Open Qu	estions				

- Toda's theorem for QCPH, i.e., QCPH $\subseteq P^{PP}$?
 - [GSSSY22] shows QCPH $\subseteq P^{PP^{PP}}$
 - Otherwise, oracle separation?
- Is pureQPH \subseteq QPH?
- Error reduction for QPH?
- Two-sided error reduction for pureQPH?
- Collapse theorem for QPH/pureQPH?
- Evidence that QCPH/QPH/pureQPH *don't* collapse?
- Improve pureQPH \subseteq EXP^{PP}. Is pureQ $\Sigma_3 \subseteq$ NEXP?
 - [GSSSY22] shows $Q\Sigma_3 \subseteq NEXP$: Guess $|\psi_1\rangle$ and use $Q\Pi_2 \subseteq EXP$.
 - Even $pureQ\Pi_2 \in \mathsf{NEXP}$ remains open.