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The Polynomial Hierarchy (PH)

@ Introduced by Stockmeyer 1976, staple of TP "
classical complexity theory. IN 3
@ Applications from randomized computation to
quantum advantage analysis for near-term
quantum computers.

P2 IT;
Deﬁnitlol] (Z?) A 7\ /{ A
L € TP if there exists a deterministic poly-time PNP = AP
Turing machine M s.t. e N
o x L= Iy, Vy,Ay, - Quy;: M(x,v;,...,9;,) = 1 NP=2§’ Hi) — NP
o x &L =Vy dy,Yy, - Quit M(x,9y,...,%;) =0 NS
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The Polynomial Hierarchy (PH)

@ Introduced by Stockmeyer 1976, staple of TP "
classical complexity theory. IN 3

@ Applications from randomized computation to
quantum advantage analysis for near-term
quantum computers.

28 IT;
Deﬁnitlol] (HF) A 7\ /{ A
L € TP if there exists a deterministic poly-time PNP = AP
Turing machine M s.t. e N
o x €L =Vy,3y,Vy, - Qi M(x,py,...,7,) =1 NP = xF 1Y = coNP
o x ¢ L= Iy, Yy, Ay, - Qu;: M(x,9,,...,9;) =0 ,\ /

o TI7: Same as ¥, but with inverted quantifiers
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The Quantum Polynomial Hierarchy (QPH)

o Many ways to define a quantum polynomial hierarchy...
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The Quantum Polynomial Hierarchy (QPH)

Quantum Classical PH (QCPH) [Gharibian, Santha, Sikora, Sundaram, Yirka, 2022]
Promise problem L = (L, L,,,) € QCZ; if there exists a poly-time uniform family of
quantum circuits {V,}, . and ¢, s with ¢ —s > 1/ poly(n) s.t.

o Completeness: x € L., = Iy, Yy, --- Q;y;: Pr[V, accepts (x,y;,...,9))] > ¢

e Soundness: x €L, = Yy, Ay, - Q,u;: Pr[V, accepts (x,v,,...,9,)] < s

Quantum Polynomial Hierarchies: Karp-Lipton, Error Reduction, and Lower Bounds

A. Agarwal, S. Gharibian, V. Koppula, D. Rudolph



Introduction
ooe

The Quantum Polynomial Hierarchy (QPH)

Quantum Classical PH (QCPH) [Gharibian, Santha, Sikora, Sundaram, Yirka, 2022]

Promise problem L = (L, L,,,) € QCZ; if there exists a poly-time uniform family of
quantum circuits {V,}, . and ¢, s with ¢ —s > 1/ poly(n) s.t.

o Completeness: x € L., = Iy, Yy, --- Q;y;: Pr[V, accepts (x,y;,...,9))] > ¢
e Soundness: x €L, = Yy, Ay, - Q,u;: Pr[V, accepts (x,v,,...,9,)] < s

o QPH [GSSSY22]: proofs are mixed states
x € Lyoe = Ap,Yp, - Q,p;: Pr[V, accepts [x)(x|®p, ® - ®p,] > c.
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o Completeness: x € L., = Iy, Yy, --- Q;y;: Pr[V, accepts (x,y;,...,9))] > ¢

e Soundness: x €L, = Yy, Ay, - Q,u;: Pr[V, accepts (x,v,,...,9,)] < s

o QPH [GSSSY22]: proofs are mixed states
x € Lyoe = Ap,Yp, - Q,p;: Pr[V, accepts [x)(x|®p, ® - ®p,] > c.

e pureQPH (this work): proofs are pure states
X € Lyes = APV [,) --- Qilhy): Pr[V,, accepts [x) ® [1h;) @ - ® [;)] > c.
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Promise problem L = (L, L,,,) € QCZ; if there exists a poly-time uniform family of
quantum circuits {V,}, . and ¢, s with ¢ —s > 1/ poly(n) s.t.

o Completeness: x € L., = Iy, Yy, --- Q;y;: Pr[V, accepts (x,y;,...,9))] > ¢
e Soundness: x €L, = Yy, Ay, - Q,u;: Pr[V, accepts (x,v,,...,9,)] < s

o QPH [GSSSY22]: proofs are mixed states

x € Lyoe = Ap,Yp, - Q,p;: Pr[V, accepts [x)(x|®p, ® - ®p,] > c.
e pureQPH (this work): proofs are pure states

x € Lyog = APV [ih,) - Qily): Pr[V, accepts |x) @ [¢) ® --- @ [)] = c.
e QCMA = QCE,, coQMA = QII; = pureQIT,
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Promise problem L = (L, L,,,) € QCZ; if there exists a poly-time uniform family of
quantum circuits {V,}, . and ¢, s with ¢ —s > 1/ poly(n) s.t.

o Completeness: x € L., = Iy, Yy, --- Q;y;: Pr[V, accepts (x,y;,...,9))] > ¢

e Soundness: x €L, = Yy, Ay, - Q,u;: Pr[V, accepts (x,v,,...,9,)] < s

o QPH [GSSSY22]: proofs are mixed states
x € Lyoe = Ap,Yp, - Q,p;: Pr[V, accepts [x)(x|®p, ® - ®p,] > c.
e pureQPH (this work): proofs are pure states
x € Lyog = APV [ih,) - Qily): Pr[V, accepts |x) @ [¢) ® --- @ [)] = c.
e QCMA = QCE,, coQMA = QII; = pureQIT,
e QIT, = QX, = QRG(1) € PSPACE [GSSSY22] [Jain, Watrous, 2009]
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quantum circuits {V,}, . and ¢, s with ¢ —s > 1/ poly(n) s.t.

o Completeness: x € L., = Iy, Yy, --- Q;y;: Pr[V, accepts (x,y;,...,9))] > ¢

e Soundness: x €L, = Yy, Ay, - Q,u;: Pr[V, accepts (x,v,,...,9,)] < s

o QPH [GSSSY22]: proofs are mixed states
x € Lyoe = Ap,Yp, - Q,p;: Pr[V, accepts [x)(x|®p, ® - ®p,] > c.
e pureQPH (this work): proofs are pure states
x € Lyog = APV [ih,) - Qily): Pr[V, accepts |x) @ [¢) ® --- @ [)] = c.
e QCMA = QCE,, coQMA = QII; = pureQIT,
e QIT, = QX, = QRG(1) € PSPACE [GSSSY22] [Jain, Watrous, 2009]
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The Quantum Polynomial Hierarchy (QPH)

Quantum Classical PH (QCPH) [Gharibian, Santha, Sikora, Sundaram, Yirka, 2022]

Promise problem L = (L, L,,,) € QCZ; if there exists a poly-time uniform family of
quantum circuits {V,}, . and ¢, s with ¢ —s > 1/ poly(n) s.t.

o Completeness: x € L., = Ay, Yy, --- Q;y;: Pr[V, accepts (x,7;,...,9,)] > 1 - e}(—p
e Soundness:  x €L, = Yy, dy, - Q,y;: Pr[V, accepts (x,v,,...,9,)] £ -

1
exp
o QPH [GSSSY22]: proofs are mixed states

x € Lyoe = Ap,Yp, - Q,p;: Pr[V, accepts [x)(x|®p, ® - ®p,] > c.
e pureQPH (this work): proofs are pure states

X € Lyes = J[P)VI,) --- Q;lh): Pr[V, accepts [x) ® [1h) ® --- @ [§)] > c.
e QCMA = QCE,, coQMA = QII; = pureQIT,
e QIT, = QX, = QRG(1) € PSPACE [GSSSY22] [Jain, Watrous, 2009]

e Sion’s minimax theorem: max, min, Tr(H(p ® 0)) = min, max, Tr(H(p ® 0))

@ Error reduction possible for QCPH but not known for QPH, pureQPH.
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Results: Quantum Karp-Lipton

o Karp-Lipton theorem: SAT cannot be solved with poly-size circuits, unless PH
collapses to its second level.
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Results: Quantum Karp-Lipton

o Karp-Lipton theorem: SAT cannot be solved with poly-size circuits, unless PH
collapses to its second level.
o Generally assumed that ¥, ,; = X, for all k.
o Formally: If NP € P, then IT, = %, and therefore PH = %,.
o GSSSY22: If Precise-QCMA € BQP, . then QCIT, = QCX,.

BOP

(BQP with deterministic poly-size Merlin-like advice)

/mpoly
Promise problem L = (L., L,,) € BQP, . if there exists a poly-time uniform
family of quantum circuits {C,},. and a collection of advice strings {a,},n With
la,| = poly(n) s.t.

° x € L, = Pr[C, accepts |x)|a,)] > 2/3

e xeL,, = Pr[C, accepts |x)|a,)] <1/3
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Results: Quantum Karp-Lipton

o Karp-Lipton theorem: SAT cannot be solved with poly-size circuits, unless PH
collapses to its second level.
o Generally assumed that ¥, ,; = X, for all k.
o Formally: If NP € P, then IT, = %, and therefore PH = %,.
o GSSSY22: If Precise-QCMA € BQP, . then QCIT, = QCX,.
BQP (BQP with deterministic poly-size Merlin-like advice)
Promise problem L = (L., L,,) € BQP, . if there exists a poly-time uniform
family of quantum circuits {C,},. and a collection of advice strings {a,},n With
la,| = poly(n) s.t.
° x € L, = Pr[C, accepts |x)|a,)] > 2/3
e x e L, = Pr[C, accepts |x)|a,)] <1/3
e Why? Same problem as ABPP vs. MA: BQP/poly has to accept with probability
<1/3 or > 2/3 even for bad advice!

/mpoly
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Results: Quantum Karp-Lipton

o Karp-Lipton theorem: SAT cannot be solved with poly-size circuits, unless PH
collapses to its second level.

o Generally assumed that ¥, ,; = X, for all k.

o Formally: If NP € P, then IT, = %, and therefore PH = %,.
o GSSSY22: If Precise-QCMA € BQP, . then QCIT, = QCX,.
Collapse theorem for QCPH

If for any k > 1, QCIT, = QCX,, then QCPH = QCX,.

@ Also in concurrent work [Falor, Ge, Natarajan, 2023]
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Results: Quantum Karp-Lipton

o Karp-Lipton theorem: SAT cannot be solved with poly-size circuits, unless PH
collapses to its second level.

o Generally assumed that ¥, ,; = X, for all k.
o Formally: If NP € P, then IT, = %, and therefore PH = %,.

o GSSSY22: If Precise-QCMA C BQP/mpoly, then QCII, = QCL,.
Collapse theorem for QCPH
If for any k > 1, QCIT, = QCX,, then QCPH = QCX,.

Karp-Lipton theorem for QCPH

If QCMA C BQP/mpoly, then QCPH = QCX, = QCIL,.
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Results: Quantum Karp-Lipton

o Karp-Lipton theorem: SAT cannot be solved with poly-size circuits, unless PH
collapses to its second level.

o Generally assumed that ¥, ,; = X, for all k.
o Formally: If NP € P, then IT, = %, and therefore PH = %,.

o GSSSY22: If Precise-QCMA C BQP/mpoly, then QCII, = QCL,.
Collapse theorem for QCPH
If for any k > 1, QCIT, = QCX,, then QCPH = QCX,.

Karp-Lipton theorem for QCPH

If QCMA C BQP/mpoly, then QCPH = QCX, = QCIL,.

@ QCMA cannot be solved by (non-uniform) poly-size quantum circuits, unless QCPH
collapses to its second level.
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Results: Error Reduction

One-sided error reduction for pureQPH

Forall i >0 and c —s > 1/p(n) for some polynomial p,

@ Foreveni>O0:

1 1
pureQIT,(c,s) C pureQITEP (1 - —, 1 - ——
e np(n)?
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Results: Error Reduction

One-sided error reduction for pureQPH

Forall i >0 and c —s > 1/p(n) for some polynomial p,

@ Foreveni>0:
0 pureQX,;(c,s) C pureQXPEP (1/np(n)?,1/e")
@ pureQIT,(c,s) C pureQITPEP (1 - 1/e",1 - 1/np(n)?)
Q Foroddi > 0:
0 pureQX,(c,s) C pureQXEP (1 —1/e",1 — 1/np(n)?)
@ pureQIl,(c,s) C pureQIT>EP (1/np(n)?,1/e")
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Results: Error Reduction

One-sided error reduction for pureQPH

Forall i >0 and c —s > 1/p(n) for some polynomial p,

@ Foreveni>0:
0 pureQX,;(c,s) C pureQXPEP (1/np(n)?,1/e")
@ pureQIT,(c,s) C pureQITPEP (1 - 1/e",1 - 1/np(n)?)
Q Foroddi > 0:
0 pureQX,(c,s) C pureQXEP (1 —1/e",1 — 1/np(n)?)
@ pureQIl,(c,s) C pureQIT>EP (1/np(n)?,1/e")

o pureQX>EP C pureQY; same as pureQY,, but YES-case POVM must be separable
across all i proofs: H = Z],Hij) ® - ®Hl-(])
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Results: Error Reduction

One-sided error reduction for pureQPH

Forall i >0 and c —s > 1/p(n) for some polynomial p,

@ Foreveni>0:
0 pureQX,;(c,s) C pureQXPEP (1/np(n)?,1/e")
@ pureQIT,(c,s) C pureQITPEP (1 - 1/e",1 - 1/np(n)?)
Q Foroddi > 0:
0 pureQX,(c,s) C pureQXEP (1 —1/e",1 — 1/np(n)?)
@ pureQIl,(c,s) C pureQIT>EP (1/np(n)?,1/e")

e Significance: One-sided error reduction for QMA(2) [Aaronson, Beigi, Drucker,
Fefferman, Shor, 2008] is the first step in the two-sided error reduction [Harrow,
Montanaro, 2012}, also relying on verifier separability.

A. Agarwal, S. Gharibian, V. Koppula, D. Rudolph Quantum Polynomial Hierarchies: Karp-Lipton, Error Reduction, and Lower Bounds



Results
[e]e] o]

Results: Error Reduction

One-sided error reduction for pureQPH

Forall i >0 and c —s > 1/p(n) for some polynomial p,
Q@ Foreveni>0:
0 pureQX,;(c,s) C pureQXPEP (1/np(n)?,1/e")
@ pureQIT,(c,s) C pureQITPEP (1 - 1/e",1 - 1/np(n)?)
@ For odd i > 0:
0 pureQX,(c,s) C pureQXEP (1 —1/e",1 — 1/np(n)?)
@ pureQIl,(c,s) C pureQIT>EP (1/np(n)?,1/e")

e Significance: One-sided error reduction for QMA(2) [Aaronson, Beigi, Drucker,
Fefferman, Shor, 2008] is the first step in the two-sided error reduction [Harrow,
Montanaro, 2012}, also relying on verifier separability.

o Note, OMA(2) € QX,; C pureQZX,.
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Results: Upper & Lower Bounds

Lemma

For all even k > 2, QCIT, C pureQIT,.
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Results: Upper & Lower Bounds

Lemma

For all even k > 2, QCIT, C pureQIT,.

QCPH C pureQPH c EXPPP
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Results: Upper & Lower Bounds

Lemma

For all even k > 2, QCIT, C pureQIT,.

QCPH C pureQPH c EXPPP

@ Concurrent work: QCPH = DistributionQCPH C QPH, at the cost of constant
factor blowup in level [Grewal, Yirka, 2024].
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Results: Upper & Lower Bounds

Lemma

For all even k > 2, QCIT, C pureQIT,.

Theorem

QCPH C pureQPH c EXPPP

@ Concurrent work: QCPH = DistributionQCPH C QPH, at the cost of constant
factor blowup in level [Grewal, Yirka, 2024].

e Containment in EXPP? follows from Toda’s theorem:

pureQX, € NEXPN""" ¢ EXPN' = EXPP™ = EXPPP

A. Agarwal, S. Gharibian, V. Koppula, D. Rudolph Quantum Polynomial Hierarchies: Karp-Lipton, Error Reduction, and Lower Bounds
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Collapse theorem

Collapse theorem for QCPH
If for any k > 1, QCIT, = QCX,, then QCPH = QCX,.
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Quantum Karp-Lipton
(1o

Collapse theorem

Collapse theorem for QCPH

If for any k > 1, QCIT, = QCX,, then QCPH = QCY,.

Lemma

If for any k > 1, QCE, = QCII,, then for all i > k, QCE, = QCII, = QCEL,.
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Lemma

If for any k > 1, QCX, = QCI1,, then for all i > k, QCE,; = QCII, = QCZ,.

Proof by induction: Assume QCX; = QCIT; = QCEy for all j € {k, ..., i — 1}.
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If for any k > 1, QCX, = QCI1,, then for all i > k, QCE,; = QCII, = QCZ,.

Proof by induction: Assume QCY; = QCII; = QCZy for all j € {k, ..., i — 1}. Let
L = (Lye Lyo) € QCE; with verifier V. Define L = (L, Ly,):

yes’

A. Agarwal, S. Gharibian, V. Koppula, D. Rudolph Quantum Polynomial Hierarchies: Karp-Lipton, Error Reduction, and Lower Bounds



Quantum Karp-Lipton
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If for any k > 1, QCX, = QCI1,, then for all i > k, QCE,; = QCII, = QCZ,.

Proof by induction: Assume QCY; = QCII; = QCZy for all j € {k, ..., i — 1}. Let
L = (Lyes, L) € QCE; with verlher V., Defme L= (L L)

yes’
L},’es_{x'yl |Vy23?3"'Q1'}’i: iV, (%9, ...,9) =1 22/3}
L, = {(x'}ﬁ) | dy,Vy;, "'aiyi Pr[V,(x, 9y, ..., %) = 1] < 1/3}

OJ
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If for any k > 1, QCX, = QCI1,, then for all i > k, QCE,; = QCII, = QCZ,.

Proof by induction: Assume QCY; = QCII; = QCZy for all j € {k, ..., i — 1}. Let
L = (Lyes, L) € QCE; with verlher V., Defme L= (L L)

yes’
L},/es = { (x,9,) | Vy,3y; - Qy;t PV, (x,9,,...,9) = 1] = 2/3}
Ly = {(,90) | 39295 Qyt Pr[V,(x, 9y, ..., %) = 1] < 1/3)
L' e QCII,_, = QCX,_,. Thus there exists V,, s.t.
(%,91) € Lyes = 39,95 - Qg+ PrlV,(x, 91, ..., 9) = 1] > 2/3
(x,91) € Ly = V9 3y; - Qi+ Pr[Vy(x,9y,...,9) = 1] <1/3

OJ
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Quantum Karp-Lipton
oeo
Lemma

If for any k > 1, QCX, = QCI1,, then for all i > k, QCE,; = QCII, = QCZ,.

Proof by 'Lnductlon Assume QCE; = QCIL; = QCE, for all j € {k,...,i — 1}. Let
L= (L o) € QCX; with verlher V., Defme L = (Ljess Lpo):

L},’es = { (x,91) | Vy,3y; - Qy;t PV, (x,9,,...,9) = 1] = 2/3}
Lio ={(x9:) | Fp,Y; - Qy: PrlV,(6, 91, -,9) = 1] < 1/3
L' e QCII,_, = QCX,_,. Thus there exists V,, s.t.

yes ’

—

(x,9;) € L;es = dy,Vy, ---@yi. Pr[V,(x,vy,...,9;) = 1] >2/3

(x,91) € Lyo = V9, 3y; - Q2 Pr[Vi(x,py,...,9) = 1] <1/3

X €Ly = Ayt (x,91) € Loy = Jy, Ay, ¥y, - Qy;t Pr[Vy(x,9,,...,9,) = 1] 2 2/3
x€L,,=Vy: (x,9,) €Ly, =Yy, YVy,dy; - Qiy;: Pr[V,(x,9y,...,9:) = 1] <1/3
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Quantum Karp-Lipton
oeo
Lemma

If for any k > 1, QCX, = QCI1,, then for all i > k, QCE,; = QCII, = QCZ,.

Proof by 'Lnductlon Assume QCE; = QCIL; = QCE, for all j € {k,...,i — 1}. Let
L= (L o) € QCX; with verlher V., Defme L = (Ljess Lpo):

L},’es = { (x,91) | Vy,3y; - Qy;t PV, (x,9,,...,9) = 1] = 2/3}
Lio ={(x9:) | Fp,Y; - Qy: PrlV,(6, 91, -,9) = 1] < 1/3
L' e QCII,_, = QCX,_,. Thus there exists V,, s.t.

yes ’

—

(x,9;) € L;es = dy,Vy, ---@yi. Pr[V,(x,vy,...,9;) = 1] >2/3

(x,91) € Lyo = V9, 3y; - Q2 Pr[Vi(x,py,...,9) = 1] <1/3

X €Ly = Ayt (x,91) € Loy = Jy, Ay, ¥y, - Qy;t Pr[Vy(x,9,,...,9,) = 1] 2 2/3
x€L,,=Vy: (x,9,) €Ly, =Yy, YVy,dy; - Qiy;: Pr[V,(x,9y,...,9:) = 1] <1/3

Hence, L € QCE,_,. O
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Quantum Karp-Lipton
ooce

Karp-Lipton theorem for QCPH

If QCMA C BQP, . then QCPH = QC¥, = QCTL,.

Proof sketch.

o Let L = (Ly, L,,) € QCIL, with verifier V,, and negligible error e.
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ooce
Karp-Lipton theorem for QCPH

If QCMA C BQP, . then QCPH = QC¥, = QCTL,.

Proof sketch.

o Let L = (Ly, L,,) € QCIL, with verifier V,, and negligible error e.
o Need to show L € QCZ,. Define verifier V,(x,C, y;) := V,(x,v;, C(x,9;)):
o V, takes in quantum circuit C, computes y, = C(x,y;), and runs V,(x, v;, v,).

A. Agarwal, S. Gharibian, V. Koppula, D. Rudolph Quantum Polynomial Hierarchies: Karp-Lipton, Error Reduction, and Lower Bounds



ooce
Karp-Lipton theorem for QCPH

If QCMA C BQP, . then QCPH = QC¥, = QCTL,.

Proof sketch.

o Let L = (Ly, L,,) € QCIL, with verifier V,, and negligible error e.
o Need to show L € QCZ,. Define verifier V,(x,C, y;) := V,(x,v;, C(x,9;)):

o IfxelL,, then dy,Vy,: Pr[V, (x,v9;,9,) = 1] <e. Thus,
YC3y,: Pr[V,(x,C,y;) = 1] <e.

Quantum Polynomial Hierarchies: Karp-Lipton, Error Reduction, and Lower Bounds
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ooce
Karp-Lipton theorem for QCPH

If QCMA C BQP, . then QCPH = QC¥, = QCTL,.

Proof sketch.

o Let L = (Ly, L,,) € QCIL, with verifier V,, and negligible error e.
o Need to show L € QCZ,. Define verifier V,(x,C, y;) := V,(x,v;, C(x,9;)):

o IfxelL,, then dy,Vy,: Pr[V, (x,v9;,9,) = 1] <e. Thus,
YC3y,: Pr[V,(x,C,y;) = 1] <e.
o Ifx € L, given y,, the problem of finding v, s.t. V,(x,9,,,) accepts, is in QCMA.
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ooce
Karp-Lipton theorem for QCPH

If QCMA C BQP, . then QCPH = QC¥, = QCTL,.

Proof sketch.

o Let L = (Ly, L,,) € QCIL, with verifier V,, and negligible error e.
o Need to show L € QCZ,. Define verifier V,(x,C, y;) := V,(x,v;, C(x,9;)):
o IfxeL,, then Jy,Yy,: Pr[V, (x,v,,v,) = 1] <e. Thus,
YC3y,: Pr[V,(x,C,y;) = 1] <e.
o Ifx € L, given y,, the problem of finding v, s.t. V,(x,9,,,) accepts, is in QCMA.

e Use randomized reduction from QCMA to UQCMA [Aharonov, Ben-Or, Brandao,
Sattah, 2022] to compute instance Py, With unique witness. By

QCMA € BQP, . 3 circuit C deciding D p,)-
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ooce
Karp-Lipton theorem for QCPH

If QCMA C BQP, . then QCPH = QC¥, = QCTL,.

Proof sketch.

o Let L = (Ly, L,,) € QCIL, with verifier V,, and negligible error e.
o Need to show L € QCZ,. Define verifier V,(x,C, y;) := V,(x,v;, C(x,9;)):
o IfxelL,, then dy,Vy,: Pr[V, (x,v9;,9,) = 1] <e. Thus,

YC3y,: Pr[V,(x,C,y;) = 1] <e.

o Ifx € L, given y,, the problem of finding v, s.t. V,(x,9,,,) accepts, is in QCMA.
@ Use randomized reduction from QCMA to UQCMA [ABBS22] to compute instance
Py, With unique witness. By QCMA € BQP 3 circuit C deciding Pix,)-

@ Apply search-to-decision reduction of [Irani, Natarajan, Nirkhe, Rao, Yuen, 2022] to
construct circuit C that finds the unique witness for ¢, , :

PrszC(x,yl)[Vn(x’yllyZ) = 1] 2 1/p01y

/mpoly’
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ooce
Karp-Lipton theorem for QCPH

If QCMA C BQP, . then QCPH = QC¥, = QCTL,.

Proof sketch.

o Let L = (Ly, L,,) € QCIL, with verifier V,, and negligible error e.
o Need to show L € QCZ,. Define verifier V,(x,C, y;) := V,(x,v;, C(x,9;)):
o IfxeL,, then Jy,Yy,: Pr[V, (x,v,,v,) = 1] <e. Thus,

YC3y,: Pr[V,(x,C,y;) = 1] <e.

o Ifx € L, given y,, the problem of finding v, s.t. V,(x,9,,,) accepts, is in QCMA.
@ Use randomized reduction from QCMA to UQCMA [ABBS22] to compute instance
Py, With unique witness. By QCMA € BQP J circuit C deciding ¢y, ).

o Apply search-to-decision reduction of [INNRY22] to construct circuit C that finds
the unique witness for ¢, , \: Pr, () [Va(x,91,9,) = 1] > 1/ poly.
e JCVy,: Pr[V,(x,C,v;) = 1] > 1/ poly. O

/mpoly’
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Error Reduction
[ leJele]

@ Error Reduction
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Error Reduction
[e] Jele]

Asymmetric Product Test (APT)

Recall, for L € pureQIl; (i even), there exist ¢, s with ¢ —s > 1/ poly s.t.
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Error Reduction
[e] Jele]

Asymmetric Product Test (APT)

Recall, for L € pureQIl; (i even), there exist ¢, s with ¢ —s > 1/ poly s.t.
© X € Ly = V[¢)Alhy) - ) s Pr[Vi(Ix, iy, ..., y)) = 1] 2 ¢
© x €Ly, = AP)VIy) - VI): Pr{V(Ix, ¢y, ... h)) = 1] <5
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Error Reduction
[e] Jele]

Asymmetric Product Test (APT)

Recall, for L € pureQIl; (i even), there exist ¢, s with ¢ —s > 1/ poly s.t.
o xe Lyes = V|¢1>3|¢2> 3'4)1'): PI‘[V(|X,1,D1, '¢i>) = 1] >1- 1/eXp
o x €L, = dWP)VIh,) - V) Pr[V(lx, ¢y, ...,h)) = 1] < 1/exp

o Could do “majority voting” if we get poly(n) copies of each state.
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Error Reduction
[e] Jele]

Asymmetric Product Test (APT)

Recall, for L € pureQIl; (i even), there exist ¢, s with ¢ —s > 1/ poly s.t.

e xel, = Y )3Alp,) - Ay PrV(Ix, ¢, ..., ) =1]>1-1/exp
o x €L, = AP)YIP,) - YI[P): Pr[V(Ix,¢y,...,¢)) = 1] < 1 -1/ poly
o Could do “majority voting” if we get poly(n) copies of each state.

o If the last proof |¢);) contains copies of all previous states, then we can still do
majority voting. Verify this with the APT!
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Error Reduction
[e] Jele]

Asymmetric Product Test (APT)

Recall, for L € pureQIl; (i even), there exist ¢, s with ¢ —s > 1/ poly s.t.

e xel, = Y )3Alp,) - Ay PrV(Ix, ¢, ..., ) =1]>1-1/exp
o x €L, =YY,V Pr[V(Ix,¢y,...,¢)) = 1] < 1-1/poly
o Could do “majority voting” if we get poly(n) copies of each state.

o If the last proof |¢);) contains copies of all previous states, then we can still do
majority voting. Verify this with the APT!

@ We construct new “asymmetric version” of the product test [Mintert, Kus,
Buchleitner, 2005] [Harrow, Montanaro, 2012]
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Error Reduction
[e]e] o]

@ Input:

o Register A: [p) = [1h) ® - ® [1),) with [y) € C*
o Register B: |¢) € C¥=4@)" (m copies of |ih))
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Error Reduction
[e]e] o]

@ Input:

o Register A: [p) = [1h) ® - ® [1),) with [y) € C*
o Register B: |¢) € C¥=4@)" (m copies of |ih))

@ Choose (i, j) € [n] x [m] uniformly at random.
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Error Reduction

[e]e] o)

@ Input:
o Register A: [) = [,) ® - ® [¢h,) with |¢,) € C%
o Register B: |¢) € C¥=4@)" (m copies of |ih))
@ Choose (i, j) € [n] x [m] uniformly at random.
© Run SWAP test between i-th register of A and its j-th
copy in B.

) —{}

¥y —

1) —

SWAP
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Error Reduction
[e]e] o]

@ Input:
o Register A: [p) = [1h) ® - ® [1),) with [y) € C*
o Register B: |¢) € C¥=4@)" (m copies of |ih))

@ Choose (i, j) € [n] x [m] uniformly at random.
© Run SWAP test between i-th register of A and its j-th
copy in B.

) —{}

¥y —

1) —

SWAP

Lemma

Let |p)pc € C" @ C* for some d’ > 0 s.t.

max (Dlpcl(IPXPI®")p ® Ic]lp)pe = 1 — €

[p):=[¢, )®---®|1h,)eC?
for e > 0.

A. Agarwal, S. Gharibian, V. Koppula, D. Rudolph Quantum Polynomial Hierarchies: Karp-Lipton, Error Reduction, and Lower Bounds



Error Reduction

[e]e] o)

@ Input:
o Register A: [p) = [1h) ® - ® [1),) with [y) € C*
o Register B: |¢) € C¥=4@)" (m copies of |ih))

@ Choose (i, j) € [n] x [m] uniformly at random.
© Run SWAP test between i-th register of A and its j-th
copy in B.

) —{}

¥y —

1) —

SWAP

Lemma

Let |p)pc € C" @ C* for some d’ > 0 s.t.

max (Dlpcl(IPXPI®")p ® Ic]lp)pe = 1 — €

[p):=[¢, )®---®|1h,)eC?

for e > 0. Then, APT accepts |11) spc := |P)4 ® |P)gc wp. < 1 —€/2mn for all ).
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Error Reduction
[efe]e] )

One-sided Error Reduction

Lemma

Leti be even, c —s > 1/p(n). Then

1 1
pureQIT;(c,s) C pureQITPEP (1 - —,1 - ——
e’ np(n)?
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Error Reduction
[efe]e] )

One-sided Error Reduction

Lemma

Leti be even, c —s > 1/p(n). Then
1

1
pureQIT;(c,s) C pureQITPEP (1 - —,1 - ——
e’ np(n)?

@ Let V be be a verifier for L € pureQIL(c, s) s.t.

A. Agarwal, S. Gharibian, V. Koppula, D. Rudolph Quantum Polynomial Hierarchies: Karp-Lipton, Error Reduction, and Lower Bounds



Error Reduction
[efe]e] )

One-sided Error Reduction

Lemma

Leti be even, c —s > 1/p(n). Then

1 1
pureQIT;(c,s) C pureQITPEP (1 - —,1 - ——
e’ np(n)?

@ Let V be be a verifier for L € pureQIL(c, s) s.t.

o Verifier V'(([th) ® -+ @ [,_1))a ® | )pc) with [)) = (1) ® -+ ® [¢h,_;))F" ® |1h,)&"
(for honest last prover). Do with probability 1/2:
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Error Reduction
[efe]e] )

One-sided Error Reduction

Lemma

Leti be even, c —s > 1/p(n). Then

1 1
pureQIT;(c,s) C pureQITPEP (1 - —,1 - ——
e’ np(n)?

@ Let V be be a verifier for L € pureQIL(c, s) s.t.

o Verifier V'(([th) ® -+ @ [,_1))a ® | )pc) with [)) = (1) ® -+ ® [¢h,_;))F" ® |1h,)&"
(for honest last prover). Do with probability 1/2:

@ Apply APT between A and B.
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Error Reduction
[efe]e] )

One-sided Error Reduction

Lemma

Leti be even, c —s > 1/p(n). Then

1 1
pureQIT;(c,s) C pureQITPEP (1 - —,1 - ——
e’ np(n)?

@ Let V be be a verifier for L € pureQIL(c, s) s.t.
o Verifier V'(([th) ® -+ @ [,_1))a ® | )pc) with [)) = (1) ® -+ ® [¢h,_;))F" ® |1h,)&"
(for honest last prover). Do with probability 1/2:

@ Apply APT between A and B.
@ Run original verifier V verifier on all m copies of [¢,), ..., |y;) inside B, C and
accept if at least (¢ +s)/2 runs accept.
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Error Reduction
[efe]e] )

One-sided Error Reduction

Lemma

Leti be even, c —s > 1/p(n). Then

1 1
pureQIT;(c,s) C pureQITPEP (1 - —,1 - ——
e’ np(n)?

@ Let V be be a verifier for L € pureQIL(c, s) s.t.
o Verifier V/((I;) ® -+ ® [th_1)) 4 ® [t )pc) with [¢)) = (1) ® -+ ® [1h_)F" ® [P,)&"

(for honest last prover). Do with probability 1/2:

@ Apply APT between A and B.
@ Run original verifier V verifier on all m copies of [¢,), ..., |y;) inside B, C and
accept if at least (¢ +s)/2 runs accept.

o Note that APT also bounds entanglement between B, C.
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Lower Bounds
oe

QCPH C pureQPH

For all even k > 2, QCIT, C pureQIT,.
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Lower Bounds
oe

QCPH C pureQPH

mma

For all even k > 2, QCIT, C pureQIT,.

o Let V be be a verifier for L € QCIT s.t.
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Lower Bounds
oe

QCPH C pureQPH

Lemma

For all even k > 2, QCIT, C pureQIT,.

o Let V be be a verifier for L € QCIT s.t.
o x €Ly =>Vy, Ay Pr[V(x,y,,...,9) =1]>1-1/exp
exel,, =y, Yy Pr[V(x,9,,...,1%) = 1] < 1/exp
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Lower Bounds
oe

QCPH C pureQPH

Lemma

For all even k > 2, QCIT, C pureQIT,.

o Let V be be a verifier for L € QCIT s.t.
o x €Ly =>Vy, Ay Pr[V(x,y,,...,9) =1]>1-1/exp
exel,, =y, Yy Pr[V(x,9,,...,1%) = 1] < 1/exp
o Define pureQIT, verifier V'(|x) ® [1;) ® - ® [ih_1) ® |¢P;)). Last proof
190 = (191) ® - @ [h 1 ))5" @ [ih)c (honest prover).
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Lower Bounds
oe

QCPH C pureQPH

Lemma

For all even k > 2, QCIT, C pureQIT,.

o Let V be be a verifier for L € QCIT s.t.
o x €Ly =>Vy, Ay Pr[V(x,y,,...,9) =1]>1-1/exp
exelLl,, =y, Yy Pr[V(x,9,,...,9) =1] < 1/exp
o Define pureQIT, verifier V'(|x) ® [1;) ® - ® [ih_1) ® |¢P;)). Last proof
1Y) = (1) ® -+ ® [P NE" @ | )c (honest prover). Do with probability 1/2:
@ Run APT between A (ie. |{,)® -+ ® [i._,)) and B.
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Lower Bounds
oe

QCPH C pureQPH

Lemma

For all even k > 2, QCIT, C pureQIT,.

o Let V be be a verifier for L € QCIT s.t.
o x €Ly =>Vy, Ay Pr[V(x,y,,...,9) =1]>1-1/exp
exelLl,, =y, Yy Pr[V(x,9,,...,9) =1] < 1/exp
o Define pureQIT, verifier V'(|x) ® [1;) ® - ® [ih_1) ® |¢P;)). Last proof
1Y) = (1) ® -+ ® [P NE" @ | )c (honest prover). Do with probability 1/2:
@ Run APT between A (ie. |{,)® -+ ® [i._,)) and B.
@ Measure all proofs in standard basis and denote the outcomes by v, ..., v
and y; ; for the j-th copy of i.

A. Agarwal, S. Gharibian, V. Koppula, D. Rudolph Quantum Polynomial Hierarchies: Karp-Lipton, Error Reduction, and Lower Bounds



Lower Bounds
oe

QCPH C pureQPH

Lemma

For all even k > 2, QCIT, C pureQIT,.

o Let V be be a verifier for L € QCIT s.t.
o x €Ly =>Vy, Ay Pr[V(x,y,,...,9) =1]>1-1/exp
exelLl,, =y, Yy Pr[V(x,9,,...,9) =1] < 1/exp
o Define pureQIT, verifier V'(|x) ® [1;) ® - ® [ih_1) ® |¢P;)). Last proof
1Y) = (1) ® -+ ® [P NE" @ | )c (honest prover). Do with probability 1/2:
@ Run APT between A (ie. |{,)® -+ ® [i._,)) and B.
@ Measure all proofs in standard basis and denote the outcomes by v, ..., v
and y; ; for the j-th copy of i.

o If there exists i,j s.t. y; = y; ;, reject if i is even (3), accept if i is odd (V).
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Lower Bounds
oe

QCPH C pureQPH

Lemma

For all even k > 2, QCIT, C pureQIT,.

o Let V be be a verifier for L € QCIT s.t.
o x €Ly =>Vy, Ay Pr[V(x,y,,...,9) =1]>1-1/exp
exelLl,, =y, Yy Pr[V(x,9,,...,9) =1] < 1/exp
o Define pureQIT, verifier V'(|x) ® [1;) ® - ® [ih_1) ® |¢P;)). Last proof
1Y) = (1) ® -+ ® [P NE" @ | )c (honest prover). Do with probability 1/2:
@ Run APT between A (ie. |{,)® -+ ® [i._,)) and B.
@ Measure all proofs in standard basis and denote the outcomes by v, ..., v
and y; ; for the j-th copy of i.
o If there exists i,j s.t. y; = v, ;, reject if i is even (3), accept if i is odd (V).
o Otherwise, run V(x,v,, ..., ;).
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