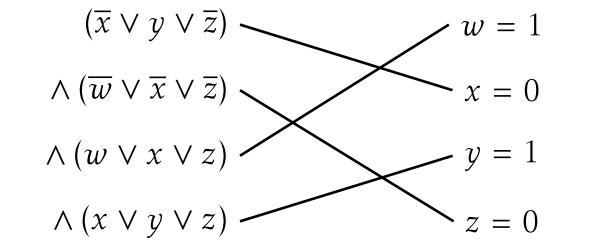
Quantum complexity theory meets TFNP: Product Quantum Satisfiability on gudits

Eddition comprenting meory		galler galler
Ma *Department of Mathematics and Applied M Virginia Commonwealth University		tum Systems (PhoQS)
INTRODUCTION	 almost extending edge order: Ordering of the edges so that all but 	Multihomogeneous Systems
How to characterize the complexity of a problem with a guaranteed, but hard to find, solution? TFNP is the class of NP <i>search</i> problems with a <i>guaranteed</i> wit–	one add a new vertex. Algorithm: Suppose each edge adds 1 vertex, then <i>transfer functions</i> set all qubits. Remove <i>redundant</i> vertices. Single <i>non-extending</i> edge	Definition ([MS87]). f is multihomogeneous if there are m sets of variables $Z_j = \{z_{0,j}, \ldots, z_{n_j,j}\}$ and $d_1, \ldots, d_m \in \mathbb{Z}_{\geq 0}$ such that f is homogeneous in Z_j of degree d_j .
ness [MP91].	induces polynomial constraint (degree $2^{O(r)}$). Non-generic instances	
 There exists a solution, it can be efficiently verified, but we don't necessarily know how to efficiently compute it! 	can "zero" transfer functions \Rightarrow restart. Finally, we sketch how to extend [ABGS21] to qu <i>d</i> its with WSDR:	• Example: $f = x_0y_0y_1 + x_1y_1y_2$ with $Z_1 = \{x_0, x_1\}, Z_2 = \{y_0, y_1, y_2\}$ • Homogeneous of degree $d_1 = 1, d_2 = 2$ in each group.
• PPAD \subseteq TFNP [JPY88; Pap94]: Given succinct description of exp- large graph G with deg ≤ 2 , node u with deg $(u) = 1$, find $v \neq u$	 Construct (artificial) non-trivial family: <i>Pinwheel graphs</i> Find product solutions efficiently (brute force would take exp-time). 	Theorem (Bézout [MS87; Sha74]). Let $F = \{f_1, \dots, f_n\}$ be a system of $n = n_1 + \dots + n_m$ multihom. polynomials with f_j of degree $d_{j,k}$
with deg(v) = 1 (End-Of-The-Line Problem). <i>Complete problems:</i> approximate Brouwer fixed point [Pap94], Nash equilibrium [DGP06; CDT09]	WSDR	in Z_k . Let $d_{Béz}$ be the coefficient of $\alpha_1^{n_1} \cdots \alpha_m^{n_m}$ in $\prod_{k=1}^n \sum_{j=1}^m d_{j,k} \alpha_j$, where α_j are symbolic variables representing Z_j . $\Rightarrow F(Z)$ has $d_{Béz}$ solutions if not infinite, counting multiplicities.
Quantum: Surprisingly, TFNP rears its head again:	Lemma ((Weighted) Hall's Marriage Theorem). Let (G, w) be a	Ex.: $F = \{f_1, f_2, f_3\}, n_1 = 1, n_2 = 2, Z_1 = \{x_0, x_1\}, Z_2 = \{y_0, y_1, y_2\}$
Definition (Quantum k -SAT). Given set of k -local rank-1 projectors $\Pi = {\Pi_i} \subseteq \mathbb{C}^{2^n \times 2^n}$ on n qubits, decide whether the Π_i have a common nullspace.	weighted hypergraph. (G, w) has a WSDR iff $ V_X _w \ge X $ for all $X \subseteq E(G)$, where $ V_X _w = \sum_{v \in e \in X} w(v)$.	$ \begin{aligned} f_1 &= x_0 y_0 y_1 + x_1 y_1 y_2 & d_{1,1} = 1 & d_{2,1} = 2 \\ f_2 &= x_0 y_0 &+ x_1 y_1 & d_{1,2} = 1 & d_{2,2} = 1 \\ f_2 &= x_0 y_0 &+ x_1 y_1 & d_{1,2} = 1 & d_{2,2} = 1 \end{aligned} $
 3-QSAT is QMA₁-complete [GN13]. 	Corollary. (G, w) has an SDR if $\deg(v) \le e _w$ for all e, v .	$f_3 = y_0 y_1 + y_1 y_2 \qquad d_{1,3} = 0 \qquad d_{2,3} = 2$
However, something unexpected happens for the "easy" case of 3–SAT	<i>Note:</i> Product solutions are points in complex projective variety	• $d_{Bez} = 3$ as $(\alpha_1 + 2\alpha_2)(\alpha_1 + \alpha_2)(\alpha_2) = \alpha_1^2 + 3\alpha_1\alpha_2^2 + 2\alpha_2^3$.
with a <i>System of Distinct Representatives (SDR)</i> (i.e. matching be- tween clauses and variables).	$\mathcal{X}_{d_1,\ldots,d_n} = \mathbb{P}^{d_1-1}(\mathbb{C}) \times \cdots \times \mathbb{P}^{d_n-1}(\mathbb{C}),$ • Each clause Π_i defines hypersurface $V_i \subseteq \mathcal{X}_{d_1,\ldots,d_n}$ of degree 1 in	Definition (Multi-Homogeneous Systems). MHS \subseteq TFNP is the set of relations poly-time reducible to finding an ϵ -approximate solution to multihomogeneous systems with $d_{B_{67}} > 0$, $O(1)$ group



 \Rightarrow Trivial: just set each representative to satisfy its clause.

QSAT with SDR is much harder! Model QSAT as hypergraph G =(V, E) with *n* qubits V:

• Clauses are rank-1 projectors $|\phi_i\rangle\langle\phi_i|$ acting on qubits $e_i \subseteq V$. • $H = \sum_{i=1}^{m} |\phi_i\rangle \langle \phi_i|_{e_i} \otimes \mathbb{I}_{V \setminus e_i}$.

Example: "Full cycle", each face represents a 3local projector.

Theorem ([LLMSS10]). QSAT with an SDR has a *product state* solution $|\psi_1\rangle \otimes \cdots \otimes |\psi_n\rangle \in \mathbb{C}^{2^n}$.

 \Rightarrow PRODSAT with SDR is in TFNP.

• There exists a parameterized algorithm to solve a special class of QSAT with SDR efficiently [ABGS21] (requires *generic*^{*} instances). • Finding *real-valued* PRODSAT solution is NP-hard [Goe19]. **Generic* means constraints which are not "edge cases", e.g., chosen uniformly at random.

Where does PRODSAT lie in the TFNP hierarchy?

 e_i and degree 0 in $V \setminus e_i$. • Count points in intersection $V_1 \cap \cdots \cap V_n$ with algebraic geometry:

Definition (Chow ring). $CH(\mathcal{X}_{d_1,\ldots,d_n}) = \mathbb{Z}[H_1,\ldots,H_n]/(H_1^{d_1},\ldots,H_n^{d_n}).$

• Example: $CH(\mathcal{X}_{2,2}) = \mathbb{Z}[H_1, H_2]/(H_1^2, H_2^2)$ with $(a+bH_1+cH_1H_2) \cdot (d+eH_2) = ad + aeH_2 + bdH_1 + (be+cd)H_1H_2$ • Subvariety representative for $V \subseteq \mathcal{X}_{d_1,\ldots,d_n}$: $[V] := \delta_1 H_1 + \cdots + \delta_n H_n$, where δ_i degree in the homogeneous coordinates of $\mathbb{P}^{d_i-1}(\mathbb{C})$.

Fact (Bézout number). Let $V_1, \ldots, V_r \subseteq \mathcal{X}_{d_1, \ldots, d_n}$ be hypersurfaces. • If $[V_1] \cdots [V_r] \neq 0$, then $V_1 \cap \cdots \cap V_r \neq \emptyset$. • If $[V_1] \cdots [V_r] = 0$, then $W_1 \cap \cdots \cap W_r = \emptyset$ for almost all hyper-

surfaces W_i with $[W_i] = [V_i]$. • If $[V_1] \cdots [V_r] = mH_1^{d_1-1} \cdots H_n^{d_n-1}$, then the generic intersection $W_1 \cap \cdots \cap W_n$ consists of *m* points (Bézout number).

• For QSAT instance on (G, w), we get $[V_i] = \sum_{j \in e_i} H_j$. Intersection of all constraints: $\prod_{i} [V_i] = \sum_{j_1 \in e_1, \dots, j_m \in e_m} H_{j_1} \cdots H_{j_m}$ *H*_{j1} … *H*_{jm} ≠ 0 iff each *H*_j appears at most *d*_j - 1 times ⇔ WSDR.

Example: 3 qutrits, 6 edges $e_1 = \{1, 2\}, e_2 = \{2, 3\},\$ $e_3 = \{3, 1\} \text{ (red)},$ $e_4 = e_5 = e_6 = \{1, 2, 3\}$ (blue).

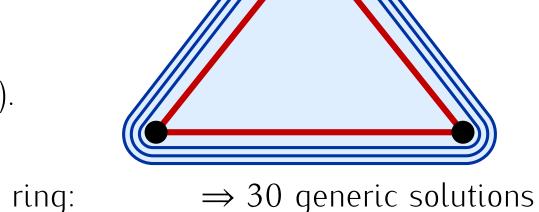


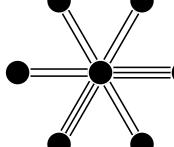
Image of intersection in chow ring: $(H_1 + H_2)(H_2 + H_2)(H_2 + H_1)(H_1 + H_2 + H_2)^3 = 30 \cdot H_1^2 H_2^2 H_2^2$

Solution to mutitionogeneous systems with $u_{Bé_7} > 0$, O(1) group size and O(1) total degree in each polynomial.

1. Represent variable group Z_i with $qu-(n_i + 1)$ -it. 2. Create copies of groups with degree > 1. 3. Add 1-local projector for each polynomial constraint. 4. Reduction to qubits (efficient due to O(1) degree). 5. Enforce equality of copies with 2-local constraints.

Theorem. O(1)-approximate PRODSAT on O(1)-local qubit systems with SDR is MHS-complete.

[SS18] can find *non-singular solutions* in time polynomial in the number WSDRs after removing one edge (generally > $\exp \cdot \#WSDRs$).



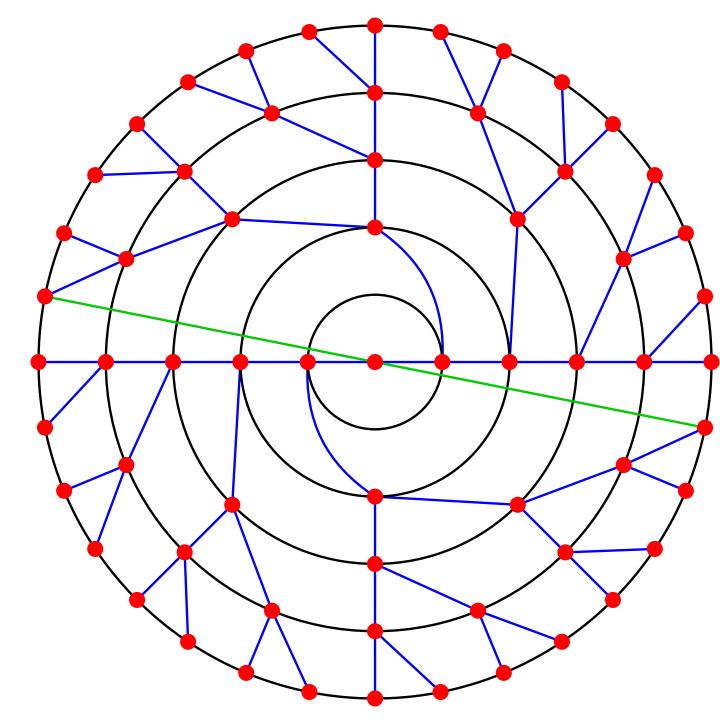
QIP 2024 | #348

• Star of n + 1 qu-*d*-its (here n = 6, d = 3). For fixed d, #WSDR = poly(*n*), even after removing an edge.

PINWHEEL GRAPH

Infinite family of efficiently solvable 2–QSAT instances on qutrits:

• Γ_n : Binary tree of height *n* (blue) with circularly connected layers (black), and two edges from root to leaf (green).



	$(H_1 + H_2)(H_2)$
RESULTS	
1. Product state solutions for qudit systems.	Reduction from q
Definition (Weighted SDR). Let $G = (V, E)$ and $w : V \to \mathbb{Z}_{\geq 0}$ be a <i>weighted hypergraph</i> . A WSDR is an assignment $f : E \to V$ with $f(e) \in e$ and $ f^{-1}(v) \leq w(v)$ for all $e, \in E, v \in V$. For QSAT on <i>qudits</i> , set $w(v_i) := d_i - 1$, where d_i is the dimension of the <i>i</i> -th qudit.	Theorem. Let Γ a WSDR. We can Π' on $\mathcal{H}' = 0$ mapping of p
	Replace first q
 Note: If ∀v ∈ V : w(v) = 1, then WSDR is equivalent to SDR. Each qu-d-it can be assigned to d − 1 edges. 	qubit x and qu Let $f : \mathbb{P}^1 \times \mathbb{P}$ f is surjective
Theorem. Let Π be a QSAT-instance on qudits of dimensions	$\forall (x, y) \in \mathbb{P}^1 \times$
d_1, \ldots, d_n . If (C, w) has a M/SDD then Π has a product colution	• Computing f^{-1}
 If (G, w) has a WSDR, then Π has a product solution. If (G, w) does not have a WSDR, and Π is generic*, then Π has 	roots of degree
no product solution.	Constructing Π' :
 Generalization of [LLMSS10] from qubits to qudits. 	• $p(z, v_2, \dots, v_k)$ the coefficients
Two independent proofs:	Replace z_i in
 Using algebraic geometry (<i>Chow ring</i>). Reduction from qudits to qubits, plugging into [LLMSS10]. 	$\langle \phi' \mathbf{x}, \mathbf{y}, \mathbf{v}_2, \dots$
Demonstrating the power of WSDRs, we recover result of [Par04]:	Going from $\Pi \rightarrow \Omega$
Corollary ([Par04]). Let $V \subseteq \mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_k$ be a completely en-	QSAT instance o <i>Note:</i> each ste
tangled subspace (contains no product states). Then $\dim(V) \leq V$	
$\prod_{i=1}^{k} d_i - \sum_{i=1}^{k} d_i + k - 1, \text{ where } d_i = \dim(\mathcal{H}_i).$	Embedding S
	Transfer function
2. Completeness for a new subclass of TFNP.	tion for a rank-1

• Define MHS \subseteq TFNP as set of relations poly-time reducible to || assignment $|\psi_1, \ldots, \psi_{k-1}\rangle$ to first k-1

$(H_1 + H_2)(H_2 + H_3)(H_3 + H_1)(H_1 + H_2 + H_3)^3 = 30 \cdot H_1^2 H_2^2 H_3^2$		
Reduction from qudits to qubits: $(qu-(d+1)-it) \mapsto (qubit and qu-d-it)$		
Theorem. Let Π be a QSAT instance on $\mathcal{H} = \mathbb{C}^{d+1} \bigotimes_{i=2}^{n} \mathbb{C}^{d_i}$ with a WSDR. We can efficiently compute Π' on $\mathcal{H}' = \mathbb{C}^2 \otimes \mathbb{C}^d \bigotimes_{i=2}^{n} \mathbb{C}^{d_i}$ with WSDR, mapping of product solutions between Π' and Π .		
Replace first qu- $(d + 1)$ -it z of Π with qubit x and qu- d -it y . Let $f : \mathbb{P}^1 \times \mathbb{P}^{d-1} \to \mathbb{P}^d$ be bilinear. f is surjective and well defined: $\forall (x, y) \in \mathbb{P}^1 \times \mathbb{P}^{d-1} : f(x, y) \neq 0$ Computing $f^{-1}(z)$ reduces to finding roots of degree d polynomial. $f(x, y) := \begin{pmatrix} x_1 y_1 \\ x_2 y_d \\ x_1 y_2 - x_2 y_1 \\ x_1 y_3 - x_2 y_2 \\ \vdots \\ x_1 y_d - x_2 y_{d-1} \end{pmatrix}$		
Constructing Π' : Let $\Pi_i = \phi\rangle\langle\phi $ on $e_i = \{z, v_2, \dots, v_k\}$.		
$p(z, v_2,, v_k) = \langle \phi z, v_2,, v_k \rangle$ is a homogeneous polynomial in the coefficients of the qudits. Replace z_j in p with $f(x, y)_j$ to obtain $p'(x, y, v_2,, v_k) = \langle \phi' x, y, v_2,, v_k \rangle$. Coing from $\Pi \to \Pi' \to \Pi'' \to \cdots \to \Pi^*$, we eventually construct a QSAT instance on qubits with SDR.		
• <i>Note:</i> each step increases number of product solutions by factor <i>d</i> .		
Embedding Sparse Polynomials		
<i>Transfer functions</i> [ABGS21] give a necessary and sufficient condi- ion for a rank-1 <i>k</i> -local clause $ \phi\rangle$ to be satisfied, given a partial ssignment $ \psi_1, \dots, \psi_{k-1}\rangle$ to first $k - 1$ qubits.		

• WSDR: assign green edges to center, black to left, blue to child. **Solution**: Arbitrary assignment $v_0 = (x, y, z)$ (dehomogenize z = 1).

- This imposes rank-1 constraints on first ring v_1 , v_2 (dep. on v_0) \Rightarrow eff. reduces dim. of qutrits to 2
- Replace qutrits with qubits, solve ring of qubits as linear system. \Rightarrow qubits are polynomials in x, y.
- Reduce second ring to qubits with blue edges. Iterate until all rings are reduced to qubits and assigned to polynomials in x, y.
- Finally, green edges induce system of two bivariate polynomials of degree $2^{O(n)}$. Solve using resultant.

Outlook

We have a a quantum problem that guarantees "simple/classical" solution, but is also likely intractable.

 \Rightarrow Either QSAT with WSDR *can* be solved efficiently, or MHScompleteness is a strong indicator for intractability.

• Are there more complete problems for MHS?

• Where does MHS lie in the TFNP hierarchy?

computing ϵ -approximate solutions to systems of multihomogeneous equations, with a solution guaranteed by Bézout's theorem. • First "quantum-inspired" subclass of TFNP.

Theorem. Computing an ϵ -approximate product state solution to *k*-QSAT with SDR is MHS-complete.

 Evidence that QSAT with SDR is intractable, even finding roots of homogeneous systems remains an open problem [Gre14]. • We can embed *sparse univariate polynomials* into QSAT with SDR.

NP-hard to decide whether 3-QSAT with SDR has prod. solution • with |x| = |y|, where x, y are entries of a given qubit. • with one additional constraint (cf. [Goe19]).

3. Efficiently solving special cases of QSAT with WSDR. We extend the parameterized algorithm of [ABGS21] to apply even to *non-generic* QSAT-instances.

Theorem. Let Π be a k-QSAT instance of qubits whose hypergraph has an *almost extending edge order* of radius r. Compute ϵ -approximate solution in time poly(L, log ϵ^{-1} , k^r) for input size L.

Lemma (Transfer function). There exists a multilinear polynomial $g: (\mathbb{C}^2)^{k-1} \to \mathbb{C}^2$ such that any partial assignment v_1, \ldots, v_{k-1} satisfies clause $|\phi\rangle$ iff $|v_k\rangle \propto g(v_1, \dots, v_{k-1})$ or $g(v_1, \dots, v_{k-1}) = 0$. • For k = 2, $|\phi\rangle = |01\rangle - |10\rangle$ sets $g(x) = x \implies$ enforce equality. • For k = 3, we can set $g(x, y) = \sum_{i,j \in [2]} \begin{bmatrix} a_{ij} x_i y_j \\ b_{ij} x_i y_j \end{bmatrix}$ for any a_{ij}, b_{ij} . Embedding a polynomial: Let $p(x) = \sum_{i=0}^{n} c_i x^i$. • Homogenize $p(x, y) = \sum_{i=0}^{n} c_i x^i y^{n-i}$ • First qubit $v_0 = (x, y)^T$. Use 2-local constraint to enforce $v_1 = v_0$. • Use 3-local constraints to construct $v_i = (x^i, y^i)^T$. • Factor $p(x, y) = x^{j} \sum_{i=j}^{n} c_{i} x^{i-j} y^{n-i} + c_{0} y^{j} y^{n-j}$ with $c_{0}, c_{j} \neq 0$. • Recursively construct $v = (q(x, y), y^{n-j})$ with 3-local constraints. -Important for intermediate terms: $v \neq 0$ for all $(x, y) \neq 0$. • Final qubit: $\begin{vmatrix} p(x,y) \\ y^n \end{vmatrix} \propto \begin{vmatrix} y^n \\ p(x,y) \end{vmatrix} \implies \frac{p(x,y)}{y^n} = p(\frac{x}{y}) = 1.$ • Sparse polynomials: Construct (x^i, y^i) in $O(\log(i))$ steps using square-and-multiply.

Is there an FPT for QSAT with WSDR?

References

[ABGS21] M. Aldi, N. de Beaudrap, S. Gharibian, and S. Saeedi. In: Commun. Math. Phys. 381.1 (Jan. 2021), pp. 209–256. [CDT09] X. Chen, X. Deng, and S.-H. Teng. In: J. ACM 56.3 (2009), 14:1–14:57. [DGP06] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. In: Thirty-Eighth Annual ACM Symposium on Theory of Computing. 2006, pp. 71–78. [GN13] D. Gosset and D. Nagaj. In: Proceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science. 2013, pp. 756–765. [Goe19] A. Goerdt. In: Computer Science – Theory and Applications. 2019, pp. 156–167. [Gre14] B. Grenet. Talk at XXVth Rencontres Arithmétiques de Caen. 2014. [JPY88] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. In: J. Comput. Syst. *Sci.* 37.1 (1988), pp. 79–100. [LLMSS10] C. R. Laumann, A. M. Läuchli, R. Moessner, A. Scardicchio, and S. L. Sondhi. In: *Phys. Rev. A* 81.6 (2010), p. 062345. [MP91] N. Megiddo and C. H. Papadimitriou. In: Theor. Comput. Sci. 81.2 (1991), pp. 317–324. [MS87] A. Morgan and A. Sommese. In: *Appl. Math. Comput.* 24.2 (1987), pp. 101–113. [Pap94] C. H. Papadimitriou. In: J. Comput. Syst. Sci. 48.3 (1994), pp. 498–532. [Par04] K. R. Parthasarathy. In: Proc. Math. Sci. 114.4 (Nov. 2004), pp. 365–374. [Sha74] I. R. Shafarevich. 1974. [SS18] M. Safey El Din and É. Schost. In: J. Symb. Comput. 87 (2018), pp. 176–206.