Quantum complexity theory meets TENP: Product Quantum Satisfiability on qudits

Marco Aldi”

*Department of Mathematics and Applied Mathematics
Virginia Commonwealth University

—o— N

m

N

INTRODUCTION

How to characterize the complexity of a problem with a quaranteed,
but hard to find, solution?

TENP is the class of NP search problems with a guaranteed wit- |

ness [MP91].

= There exists a solution, it can be efficiently verified, but we don't
necessarily know how to efficiently compute it!

= PPAD C TENP [JPY88; Pap94|: Given succinct description of exp-
large graph G with deg < 2, node u with deg(u) = 1, find v = u
with deg(v) = 1 (End-Of-The-Line Problem).
Complete problems: approximate Brouwer fixed point [Pap94|, Nash
equilibrium [DGP0O6; CDTO9]

Quantum: Surprisingly, TFNP rears its head again:

Definition (Quantum k-SAT). Given set of k-local rank-1 projectors
[T = {IL} € C*>* on n qubits, decide whether the I1, have a

common nullspace.
= 3-QSAT is QMA -complete [GN13]

However, something unexpected happens for the “easy” case of 3-SAT
with a System of Distinct Representatives (SDR) (i.e. matching be-
tween clauses and variables).

(xVyVz) w =1
A (wVXVz) x =0
AwVxVz) Y =
AXx VYV z) 7 =

= Irivial: just set each representative to satisty its clause.

QSAT with SDR is much harder! Model QSAT as hypergraph G =
(V, E) with n qubits V:

= Clauses are rank-1 projectors |, ){(¢,;| acting on qubits e, C V.

= H = Zzllqbixqbi'ei ®HV\ei'

Example:  “Full
cycle’, each face
represents a 3-
local projector.

Theorem ([LLMSS10)). QSAT with an SDR has a product state solu-
tion |)® -+ @ |, ) € C*".

= PRODSAT with SDR is in TENP.

* There exists a parameterized algorithm to solve a special class of
QSAT with SDR efficiently |ABGS21] (requires generic* instances).
= Finding real-valued PRODSAT solution is NP-hard [Goe19].

*Generic means constraints which are not “edge cases’, e.qg., chosen uniformly at random.

[ Where does PRODSAT lie in the TENP hierarchy? ]
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RESULTS

1. Product state solutions for qudit systems.

Definition (Weighted SDR). Let G = (V,E) and w : V — Z_, be
a weighted hypergraph. A WSDR is an assignment f : E —» V
with f(e) € eand |[f'(v)| < w(v) foralle,e E,v € V.

For QSAT on qudits, set w(v,) := d, — 1, where d, is the dimension
of the i-th qudit.

= Note: It Vv eV : w(v) = 1, then WSDR is equivalent to SDR
= Fach qu-d-it can be assigned to d — 1 edges.

Theorem. Let IT be a QSAT-instance on qudits of dimensions

dl) e e ) dn.
= |f (G, w) has a WSDR, then IT has a product solution.
= |f (G, w) does not have a WSDR, and I is generic®, then IT has

no product solution.

= Ceneralization of [LLMSS10] from qubits to qudits.

Two independent proofs:

= Using algebraic geometry (Chow ring).

= Reduction from qudits to qubits, plugging into [LLMSS10]

Demonstrating the power of WSDRs, we recover result of [Par04]:

Corollary ([Par04]). Let V € H, ® .- ® H, be a completely en- |
tangled subspace (contains no product states). Then dim(V) <

[T, d, - Y d +k-1, where d, = dim(H,).

2. Completeness for a new subclass of TENP.

= Define MHS C TENP as set of relations poly-time reducible to
computing e-approximate solutions to systems of multithomogeneous
equations, with a solution quaranteed by Bézout's theorem.

= First "quantum-inspired” subclass of TENP.

Theorem. Computing an e-approximate product state solution to |
k-QSAT with SDR is MHS-complete.

= Evidence that QSAT with SDR is intractable, even finding roots of
homogeneous systems remains an open problem [Gre14].
= We can embed sparse univariate polynomials into QSAT with SDR.

NP-hard to decide whether 3-QSAT with SDR has prod. solution
= with |x| = |y|, where x, v are entries of a given qubit.
= with one additional constraint (cf. [Goe19]).

3. Efficiently solving special cases of QSAT with WSDR.

We extend the parameterized algorithm of [ABGS21] to apply even to
non-generic QSAT-instances.

Theorem. Let IT be a k-QSAT instance of qubits whose hyper- |
graph has an almost extending edge order of radius r. Compute
e-approximate solution in time poly(L, loge™t, k") for input size L.
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= almost extending edge order: Ordering of the edges so that all but
one add a new vertex.

Algorithm: Suppose each edge adds 1 vertex, then transfer functions
set all qubits. Remove redundant vertices. Single non-extending edge
induces polynomial constraint (degree 2°0)). Non-generic instances
can ‘zero' transfer functions = restart.

Finally, we sketch how to extend [ABGS21] to qudits with WSDR:

= Construct (artifictal) non-trivial family: Pinwheel graphs
= Find product solutions efficiently (brute force would take exp-time).

/
WSDR )
Lemma ((Weighted) Hall's Marriage Theorem). Let (G, w) be a |
weighted hypergraph. (G, w) has a WSDR iff |V|, > |X] for all
X C E(G), where [V, =2, w(v).
| Corollary. (G, w) has an SDR if deg(v) < |e|,, for all e, v.
Note: Product solutions are points in complex projective variety
Xy, a = PHHC) x - x PYTH(C),
" Each clause I1; defines hypersurtace V;, € &,  ; of degree 1 in
e; and degree 0 in V \ e,.
= Count points in intersection V, N --- NV, with algebraic geometry:
Definition (Chow ring).
d, d,
CH(X,, . 4)=2ZH,, ..., H]/(H", ...,H").
* Example: CH(X,,) = Z[H,,H,]/(H{, H;) with
(a+bH,+cH,H,)-(d+eH,) =ad+aeH,+bdH, +(be+cd)H, H,
" Subvariety representative for V-C X, ,: [V]:=0,H +--+0,H,,
where &, degree in the homogeneous coordinates of P4~ (C).
Fact (Bézout number). Let Vy,...,V, € &, , be hypersurtaces. |
. H [Vl] *ee [VT’] Zz O, theﬂ Vl ﬂ e ﬂvr e @
= [f[V,]---[V,] =0, then W, n---NW, =@ for almost all hyper-
surfaces W, with [W.] = [V,].
= f (V] [V,] = mel_l .. Hi™' then the generic intersection
W, Nn---NW,_ consists of m points (Bézout number).
= For QSAT instance on (G, w), we get [V,] = Z],Ee_ H;.
" Intersection of all constraints: [ [V;] = Z], . m],lee H, ---H,
“H, ---H, #0iff each H, appears at most d, — 1 times & WSDR.
Example: 3 qutrits, 6 edges
e =1{1,2),¢, = {2,3},
e; = {3, 1} (red),
e, = e =¢e, =11,2,3} (blue).

* Image of intersection in chow ring: = 30 generic solutions
(H, + H,)(H, + Hy)(Hy + Hy)(H, + H, + H3)? = 30 - HYH7H3
Reduction from qudits to qubits: (qu-(d + 1)-it) — (qubit and qu-d-it)
Theorem. Let IT be a QSAT instance on H = C*! (X)?:2 C% with

a WSDR. We can efficiently compute
"IT'on H'=C*@C' Q) C* with WSDR,
= mapping of product solutions between I'T" and IT'L.
= Replace first qu-(d + 1)-it z of I'T with
bit x and qu-d-it [y
qubit x and qu-d-it . .
= Let f : P! x P"! — IP? be bilinear. . Z_yi
= f is surjective and well defined: fx,p) = xlyz } xzyl
Y(x,p) € P! % pi-1  flx,y) # 0 1Y3 : 2 Y2
= Computing f~!(z) reduces to finding '
roots of degree d polynomial. X194 = X291
Constructing IT: Let I, = |p){P| on e, = {z,v,, ..., v, }.
" p(2,vy,...,7V) ={(P|z,v,,...,v) is a homogeneous polynomial in
the coefficients of the qudits.
: Re/place z, in p with f(x,y); to obtain p'(x,p,v,...,7) =
(D'|x, v, vy, ..., Vp).
Coing from IT —» IT" —» I1” — --- — IT", we eventually construct a
QSAT instance on qubits with SDR.
" Note: each step increases number of product solutions by factor d.

EMBEDDING SPARSE POLYNOMIALS
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Iransfer functions |[ABGS21| give a necessary and sufficient condi-
tion for a rank-1 k-local clause |¢p) to be satisfied, given a partial
assignment |, ..., ) to first k — 1 qubits.

Lemma (Transfer function). There exists a multilinear polynomial |
g : (C*)*! — C? such that any partial assignment v, ...,v,_,

satisfies clause |¢) iff |vy) oc (v, ..., V() Or (v, ..., v_q) = 0.

= Fork =2, |¢p)=101)—-1]10) sets g(x) =x = enforce equality.

a;.X;V;
= For k = 3, we can set g(x,p) = I for any a,, by
Z by %,y o
i,je(2]
Embedding a polynomial: Let p(x) = Y  c,x"

= Homogenize p(x,y) = Y. c¢x'y"”
= First qubit v, = (x,v)". Use 2-local constraint to enforce v, = v,.
= Use 3-local constraints to construct v, = (x', p")!.

. n ;o i ; _ 4 .
= Factor p(x,y) = x/ Zi:j c, X' Ty +eoyly™ with ¢, ¢; = 0.

q(x,y) ,
= Recursively construct v = (g(x, v), v"77) with 3-local constraints.

— Important for intermediate terms: v = 0 for all (x,y) = 0.

. o P, D) " plx,) X
* Final qubit: [P ;ny ] o p(?y)] = = (—) = 1.

vty
= Sparse polynomials: Construct (x',y') in O(log(i)) steps using
square-and-multiply.
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MULTIHOMOGENEOUS SYSTEMS

Definition (MS87)). f is multihomogeneous if there are m sets of |
variables Z; = {z, ;, ... ,zn]_)].} and d,,...,d, € Z,, such that f is
homogeneous in Z; of degree d.. |

" Example: f = xo90p; + x99, with Zy = {xo, X1}, Z;, = {99, 91, 9>}

= Homogeneous of degree d, = 1,d, = 2 in each group.

" Theorem (Bézout [MS87; Sha74)). Let F = {f,, ..., f,} be a system 1
of n =mny + -+ n, multthom. polynomials with f; of degree d,;
in Z,. Let dg,, be the coefficient of a;" --- ap" in [T._, Z}”:l d; v,
where a; are symbolic variables representing Z..
= F(Z) has dg,, solutions if not infinite, counting multiplicities.

Ex: F=1{fi, o shm =1n, =22, ={x0, X1}, Z; = {99, V1, V5]

fi = %Yo¥1 + X1919; d, =1 dy, =2
fr =%Yy +x19 d, =1 dy, =1
=001+ d3=0 dy3 =2

" dge, =3 as (a; +2a,)(a, + ay)(a,) = a? + 3a,a5 + 205
Definition (Multi-Homogeneous Systems). MHS C TENP is the |
set of relations poly-time reducible to finding an e-approximate
solution to multthomogeneous systems with dg,, > 0, O(1) group
size and O(1) total degree in each polynomial.

1. Represent variable group Z; with qu-(n; + 1)-it.

2. Create copies of groups with degree > 1.

3.Add 1-local projector for each polynomial constraint.

4. Reduction to qubits (efficient due to O(1) degree).

5. Enforce equality of copies with 2-local constraints.

' Theorem. O(1)-approximate PRODSAT on O(1)-local qubit sys- |
tems with SDR is MHS-complete.

'SS18] can find non-singular solutions in time polyno- e o

mial in the number WSDRs after removing one edge \/

(generally > exp - #WSDRs). —0—0
= Star of n+1 qu-d-its (here n = 6,d = 3). For fixed //\

d, #NSDR = poly(n), even after removing an edge. o o ,
N\

PINWHEEL GRAPH

Infinite family of efficiently solvable 2-QSAT instances on qutrits:
= [ . Binary tree of height n (blue) with circularly connected layers

(black), and two edges from root to leaf (green).
= WSDR: assign green edges to center, black to left, blue to child.
Solution: Arbitrary assignment v, = (x, v, z) (dehomogenize z = 1)
= [his timposes rank-1 constraints on first ring v{, v, (dep. on v)
= eff. reduces dim. of qutrits to 2

= Replace qutrits with qubits, solve ring of qubits as linear system.
= qubits are polynomials in x, p.

= Reduce second ring to qubits with blue edges. lterate until all rings
are reduced to qubits and assigned to polynomials in x, v.

= Finally, green edges induce system of two bivariate polynomials of

degree 29" Solve using resultant.

\ /
)
We have a a quantum problem that guarantees “simple/classical” so-

lution, but is also likely intractable.

= Either QSAT with WSDR can be solved efficiently, or MHS-

completeness is a strong indicator for intractability.

= Are there more complete problems for MHS?
= Where does MHS lie in the TENP hierarchy?

" Is there an FPT for QSAT with WSDR? p
N\
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