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Introduction
How to characterize the complexity of a problem with a guaranteed,
but hard to find, solution?

TFNP is the class of NP search problems with a guaranteed wit-
ness [MP91].
There exists a solution, it can be efficiently verified, but we don’t
necessarily know how to efficiently compute it!
PPAD ⊆ TFNP [JPY88; Pap94]: Given succinct description of exp-
large graph 𝐺 with deg ≤ 2, node 𝑢 with deg(𝑢) = 1, find 𝑣 ≠ 𝑢
with deg(𝑣) = 1 (End-Of-The-Line Problem).
Complete problems: approximate Brouwer fixed point [Pap94], Nash
equilibrium [DGP06; CDT09]

Quantum: Surprisingly, TFNP rears its head again:

Definition (Quantum 𝑘-SAT). Given set of 𝑘-local rank-1 projectors
Π = {Π𝑖} ⊆ ℂ2𝑛×2𝑛 on 𝑛 qubits, decide whether the Π𝑖 have a
common nullspace.
3-QSAT is QMA1-complete [GN13].

However, something unexpected happens for the “easy” case of 3-SAT
with a System of Distinct Representatives (SDR) (i.e. matching be-
tween clauses and variables).

(𝑥 ∨ 𝑦 ∨ 𝑧)

∧ (𝑤 ∨ 𝑥 ∨ 𝑧)

∧ (𝑤 ∨ 𝑥 ∨ 𝑧)

∧ (𝑥 ∨ 𝑦 ∨ 𝑧)

𝑤 = 1

𝑥 = 0

𝑦 = 1

𝑧 = 0
⇒ Trivial: just set each representative to satisfy its clause.

QSAT with SDR is much harder! Model QSAT as hypergraph 𝐺 =
(𝑉, 𝐸) with 𝑛 qubits 𝑉:
Clauses are rank-1 projectors |𝜙𝑖⟩⟨𝜙𝑖| acting on qubits 𝑒𝑖 ⊆ 𝑉.
𝐻 = ∑𝑚

𝑖=1|𝜙𝑖⟩⟨𝜙𝑖|𝑒𝑖 ⊗ 𝕀𝑉∖𝑒𝑖 .

Example: “Full
cycle”, each face
represents a 3-
local projector.

Theorem ([LLMSS10]). QSAT with an SDR has a product state solu-
tion |𝜓1⟩ ⊗ ⋯ ⊗ |𝜓𝑛⟩ ∈ ℂ2𝑛 .
⇒ PRODSAT with SDR is in TFNP.
There exists a parameterized algorithm to solve a special class of
QSAT with SDR efficiently [ABGS21] (requires generic∗ instances).
Finding real-valued PRODSAT solution is NP-hard [Goe19].

∗Generic means constraints which are not “edge cases”, e.g., chosen uniformly at random.

Where does PRODSAT lie in the TFNP hierarchy?

Embedding Sparse Polynomials
Transfer functions [ABGS21] give a necessary and sufficient condi-
tion for a rank-1 𝑘-local clause |𝜙⟩ to be satisfied, given a partial
assignment |𝜓1,… , 𝜓𝑘−1⟩ to first 𝑘 − 1 qubits.

Lemma (Transfer function). There exists a multilinear polynomial
𝑔 ∶ (ℂ2)𝑘−1 → ℂ2 such that any partial assignment 𝑣1,… , 𝑣𝑘−1
satisfies clause |𝜙⟩ iff |𝑣𝑘⟩ ∝ 𝑔(𝑣1,… , 𝑣𝑘−1) or 𝑔(𝑣1,… , 𝑣𝑘−1) = 0.

For 𝑘 = 2, |𝜙⟩ = |01⟩ − |10⟩ sets 𝑔(𝑥) = 𝑥 ⇒ enforce equality.

For 𝑘 = 3, we can set 𝑔(𝑥, 𝑦) = ∑
𝑖,𝑗∈[2]

[
𝑎𝑖𝑗𝑥𝑖𝑦𝑗
𝑏𝑖𝑗𝑥𝑖𝑦𝑗

] for any 𝑎𝑖𝑗, 𝑏𝑖𝑗 .

Embedding a polynomial: Let 𝑝(𝑥) = ∑𝑛
𝑖=0 𝑐𝑖𝑥

𝑖 .
Homogenize 𝑝(𝑥, 𝑦) = ∑𝑛

𝑖=0 𝑐𝑖𝑥
𝑖𝑦𝑛−𝑖

First qubit 𝑣0 = (𝑥, 𝑦)𝑇 . Use 2-local constraint to enforce 𝑣1 = 𝑣0 .
Use 3-local constraints to construct 𝑣𝑖 = (𝑥𝑖, 𝑦𝑖)𝑇 .
Factor 𝑝(𝑥, 𝑦) = 𝑥𝑗 ∑𝑛

𝑖=𝑗 𝑐𝑖𝑥
𝑖−𝑗𝑦𝑛−𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑞(𝑥,𝑦)

+𝑐0𝑦𝑗𝑦𝑛−𝑗 with 𝑐0, 𝑐𝑗 ≠ 0.

Recursively construct 𝑣 = (𝑞(𝑥, 𝑦), 𝑦𝑛−𝑗) with 3-local constraints.
– Important for intermediate terms: 𝑣 ≠ 0 for all (𝑥, 𝑦) ≠ 0.

Final qubit: [𝑝(𝑥, 𝑦)𝑦𝑛 ] ∝ [ 𝑦𝑛
𝑝(𝑥, 𝑦)] ⇒

𝑝(𝑥, 𝑦)
𝑦𝑛

= 𝑝(
𝑥
𝑦
) = 1.

Sparse polynomials: Construct (𝑥𝑖, 𝑦𝑖) in 𝑂(log(𝑖)) steps using
square-and-multiply.

WSDR
Lemma ((Weighted) Hall’s Marriage Theorem). Let (𝐺, 𝑤) be a
weighted hypergraph. (𝐺, 𝑤) has a WSDR iff |𝑉𝑋|𝑤 ≥ |𝑋| for all
𝑋 ⊆ 𝐸(𝐺), where |𝑉𝑋|𝑤 = ∑𝑣∈𝑒∈𝑋 𝑤(𝑣).

Corollary. (𝐺, 𝑤) has an SDR if deg(𝑣) ≤ |𝑒|𝑤 for all 𝑒, 𝑣.

Note: Product solutions are points in complex projective variety
𝒳𝑑1,…,𝑑𝑛 = ℙ𝑑1−1(ℂ) × ⋯ × ℙ𝑑𝑛−1(ℂ),

Each clause Π𝑖 defines hypersurface 𝑉𝑖 ⊆ 𝒳𝑑1,…,𝑑𝑛 of degree 1 in
𝑒𝑖 and degree 0 in 𝑉 ∖ 𝑒𝑖 .
Count points in intersection 𝑉1 ∩⋯∩𝑉𝑛 with algebraic geometry:

Definition (Chow ring).
𝐶𝐻(𝒳𝑑1,…,𝑑𝑛 ) = ℤ[𝐻1,… ,𝐻𝑛]/(𝐻

𝑑1
1 ,… ,𝐻𝑑𝑛

𝑛 ).

Example: 𝐶𝐻(𝒳2,2) = ℤ[𝐻1, 𝐻2]/(𝐻2
1 , 𝐻2

2 ) with
(𝑎 +𝑏𝐻1 +𝑐𝐻1𝐻2) ⋅ (𝑑 +𝑒𝐻2) = 𝑎𝑑 +𝑎𝑒𝐻2 +𝑏𝑑𝐻1 +(𝑏𝑒 +𝑐𝑑)𝐻1𝐻2
Subvariety representative for 𝑉 ⊆ 𝒳𝑑1,…,𝑑𝑛 : [𝑉] ≔ 𝛿1𝐻1+⋯+𝛿𝑛𝐻𝑛 ,
where 𝛿𝑖 degree in the homogeneous coordinates of ℙ𝑑𝑖−1(ℂ).

Fact (Bézout number). Let 𝑉1,… , 𝑉𝑟 ⊆ 𝒳𝑑1,…,𝑑𝑛 be hypersurfaces.
If [𝑉1]⋯ [𝑉𝑟] ≠ 0, then 𝑉1 ∩⋯ ∩ 𝑉𝑟 ≠ ∅.
If [𝑉1]⋯ [𝑉𝑟] = 0, then 𝑊1 ∩⋯∩𝑊𝑟 = ∅ for almost all hyper-
surfaces 𝑊𝑖 with [𝑊𝑖] = [𝑉𝑖].
If [𝑉1]⋯ [𝑉𝑟] = 𝑚𝐻𝑑1−1

1 ⋯𝐻𝑑𝑛−1
𝑛 , then the generic intersection

𝑊1 ∩⋯ ∩𝑊𝑛 consists of 𝑚 points (Bézout number).

For QSAT instance on (𝐺, 𝑤), we get [𝑉𝑖] = ∑𝑗∈𝑒𝑖
𝐻𝑗 .

Intersection of all constraints: ∏𝑖[𝑉𝑖] = ∑𝑗1∈𝑒1,…,𝑗𝑚∈𝑒𝑚
𝐻𝑗1 ⋯𝐻𝑗𝑚

𝐻𝑗1 ⋯𝐻𝑗𝑚 ≠ 0 iff each 𝐻𝑗 appears at most 𝑑𝑗 − 1 times ⇔ WSDR.

Example: 3 qutrits, 6 edges
𝑒1 = {1, 2}, 𝑒2 = {2, 3},
𝑒3 = {3, 1} (red),
𝑒4 = 𝑒5 = 𝑒6 = {1, 2, 3} (blue).

Image of intersection in chow ring: ⇒ 30 generic solutions
(𝐻1 + 𝐻2)(𝐻2 + 𝐻3)(𝐻3 + 𝐻1)(𝐻1 + 𝐻2 + 𝐻3)3 = 30 ⋅ 𝐻2

1𝐻2
2𝐻2

3

Reduction from qudits to qubits: (qu-(𝑑 + 1)-it) ↦ (qubit and qu-𝑑-it)
Theorem. Let Π be a QSAT instance on ℋ = ℂ𝑑+1 ⨂𝑛

𝑖=2
ℂ𝑑𝑖 with

a WSDR. We can efficiently compute
Π′ on ℋ′ = ℂ2 ⊗ ℂ𝑑 ⨂𝑛

𝑖=2
ℂ𝑑𝑖 with WSDR,

mapping of product solutions between Π′ and Π.

Replace first qu-(𝑑 + 1)-it 𝑧 of Π with
qubit 𝑥 and qu-𝑑-it 𝑦.
Let 𝑓 ∶ ℙ1 × ℙ𝑑−1 → ℙ𝑑 be bilinear.
𝑓 is surjective and well defined:
∀(𝑥, 𝑦) ∈ ℙ1 × ℙ𝑑−1 ∶ 𝑓(𝑥, 𝑦) ≠ 0
Computing 𝑓−1(𝑧) reduces to finding
roots of degree 𝑑 polynomial.

𝑓(𝑥, 𝑦) ≔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥1𝑦1
𝑥2𝑦𝑑

𝑥1𝑦2 − 𝑥2𝑦1
𝑥1𝑦3 − 𝑥2𝑦2

⋮
𝑥1𝑦𝑑 − 𝑥2𝑦𝑑−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Constructing Π′: Let Π𝑖 = |𝜙⟩⟨𝜙| on 𝑒𝑖 = {𝑧, 𝑣2,… , 𝑣𝑘}.
𝑝(𝑧, 𝑣2,… , 𝑣𝑘) = ⟨𝜙|𝑧, 𝑣2,… , 𝑣𝑘⟩ is a homogeneous polynomial in
the coefficients of the qudits.
Replace 𝑧𝑗 in 𝑝 with 𝑓(𝑥, 𝑦)𝑗 to obtain 𝑝′(𝑥, 𝑦, 𝑣2 …, 𝑣𝑘) =
⟨𝜙′|𝑥, 𝑦, 𝑣2,… , 𝑣𝑘⟩.

Going from Π → Π′ → Π′′ → ⋯ → Π∗ , we eventually construct a
QSAT instance on qubits with SDR.

Note: each step increases number of product solutions by factor 𝑑.

Results
1. Product state solutions for qudit systems.

Definition (Weighted SDR). Let 𝐺 = (𝑉, 𝐸) and 𝑤 ∶ 𝑉 → ℤ≥0 be
a weighted hypergraph. A WSDR is an assignment 𝑓 ∶ 𝐸 → 𝑉
with 𝑓(𝑒) ∈ 𝑒 and |𝑓−1(𝑣)| ≤ 𝑤(𝑣) for all 𝑒, ∈ 𝐸, 𝑣 ∈ 𝑉.
For QSAT on qudits, set 𝑤(𝑣𝑖) ≔ 𝑑𝑖 − 1, where 𝑑𝑖 is the dimension
of the 𝑖-th qudit.

Note: If ∀𝑣 ∈ 𝑉 ∶ 𝑤(𝑣) = 1, then WSDR is equivalent to SDR.
Each qu-𝑑-it can be assigned to 𝑑 − 1 edges.

Theorem. Let Π be a QSAT-instance on qudits of dimensions
𝑑1,… , 𝑑𝑛 .
If (𝐺, 𝑤) has a WSDR, then Π has a product solution.
If (𝐺, 𝑤) does not have a WSDR, and Π is generic∗ , then Π has
no product solution.

Generalization of [LLMSS10] from qubits to qudits.
Two independent proofs:
Using algebraic geometry (Chow ring).
Reduction from qudits to qubits, plugging into [LLMSS10].

Demonstrating the power of WSDRs, we recover result of [Par04]:
Corollary ([Par04]). Let 𝑉 ⊆ ℋ1 ⊗ ⋯ ⊗ ℋ𝑘 be a completely en-
tangled subspace (contains no product states). Then dim(𝑉) ≤
∏𝑘

𝑖=1 𝑑𝑖 − ∑𝑘
𝑖=1 𝑑𝑖 + 𝑘 − 1, where 𝑑𝑖 = dim(ℋ𝑖).

2. Completeness for a new subclass of TFNP.
Define MHS ⊆ TFNP as set of relations poly-time reducible to
computing 𝜖-approximate solutions to systems of multihomogeneous
equations, with a solution guaranteed by Bézout’s theorem.
First “quantum-inspired” subclass of TFNP.

Theorem. Computing an 𝜖-approximate product state solution to
𝑘-QSAT with SDR is MHS-complete.
Evidence that QSAT with SDR is intractable, even finding roots of
homogeneous systems remains an open problem [Gre14].
We can embed sparse univariate polynomials into QSAT with SDR.

NP-hard to decide whether 3-QSAT with SDR has prod. solution
with |𝑥| = |𝑦|, where 𝑥, 𝑦 are entries of a given qubit.
with one additional constraint (cf. [Goe19]).

3. Efficiently solving special cases of QSAT with WSDR.
We extend the parameterized algorithm of [ABGS21] to apply even to
non-generic QSAT-instances.

Theorem. Let Π be a 𝑘-QSAT instance of qubits whose hyper-
graph has an almost extending edge order of radius 𝑟. Compute
𝜖-approximate solution in time poly(𝐿, log 𝜖−1, 𝑘𝑟) for input size 𝐿.

almost extending edge order : Ordering of the edges so that all but
one add a new vertex.

Algorithm: Suppose each edge adds 1 vertex, then transfer functions
set all qubits. Remove redundant vertices. Single non-extending edge
induces polynomial constraint (degree 2𝑂(𝑟)). Non-generic instances
can “zero” transfer functions ⇒ restart.
Finally, we sketch how to extend [ABGS21] to qudits with WSDR:
Construct (artificial) non-trivial family: Pinwheel graphs
Find product solutions efficiently (brute force would take exp-time).

Multihomogeneous Systems
Definition ([MS87]). 𝑓 is multihomogeneous if there are 𝑚 sets of
variables 𝑍𝑗 = {𝑧0,𝑗,… , 𝑧𝑛𝑗,𝑗} and 𝑑1,… , 𝑑𝑚 ∈ ℤ≥0 such that 𝑓 is
homogeneous in 𝑍𝑗 of degree 𝑑𝑗 .

Example: 𝑓 = 𝑥0𝑦0𝑦1 + 𝑥1𝑦1𝑦2 with 𝑍1 = {𝑥0, 𝑥1}, 𝑍2 = {𝑦0, 𝑦1, 𝑦2}
Homogeneous of degree 𝑑1 = 1, 𝑑2 = 2 in each group.

Theorem (Bézout [MS87; Sha74]). Let 𝐹 = {𝑓1,… , 𝑓𝑛} be a system
of 𝑛 = 𝑛1 + ⋯ + 𝑛𝑚 multihom. polynomials with 𝑓𝑗 of degree 𝑑𝑗,𝑘
in 𝑍𝑘 . Let 𝑑Béz be the coefficient of 𝛼𝑛1

1 ⋯𝛼𝑛𝑚
𝑚 in ∏𝑛

𝑘=1 ∑
𝑚
𝑗=1 𝑑𝑗,𝑘𝛼𝑗 ,

where 𝛼𝑗 are symbolic variables representing 𝑍𝑗 .
⇒ 𝐹(𝑍) has 𝑑Béz solutions if not infinite, counting multiplicities.

Ex.: 𝐹 = {𝑓1, 𝑓2, 𝑓3}, 𝑛1 = 1, 𝑛2 = 2, 𝑍1 = {𝑥0, 𝑥1}, 𝑍2 = {𝑦0, 𝑦1, 𝑦2}
𝑓1 = 𝑥0𝑦0𝑦1 + 𝑥1𝑦1𝑦2 𝑑1,1 = 1 𝑑2,1 = 2
𝑓2 = 𝑥0𝑦0 + 𝑥1𝑦1 𝑑1,2 = 1 𝑑2,2 = 1
𝑓3 = 𝑦0𝑦1 + 𝑦1𝑦2 𝑑1,3 = 0 𝑑2,3 = 2

𝑑Béz = 3 as (𝛼1 + 2𝛼2)(𝛼1 + 𝛼2)(𝛼2) = 𝛼2
1 + 3𝛼1𝛼2

2 + 2𝛼3
2 .

Definition (Multi-Homogeneous Systems). MHS ⊆ TFNP is the
set of relations poly-time reducible to finding an 𝜖-approximate
solution to multihomogeneous systems with 𝑑Béz > 0, 𝑂(1) group
size and 𝑂(1) total degree in each polynomial.

1. Represent variable group 𝑍𝑗 with qu-(𝑛𝑗 + 1)-it.
2. Create copies of groups with degree > 1.
3. Add 1-local projector for each polynomial constraint.
4. Reduction to qubits (efficient due to 𝑂(1) degree).
5. Enforce equality of copies with 2-local constraints.

Theorem. 𝑂(1)-approximate PRODSAT on 𝑂(1)-local qubit sys-
tems with SDR is MHS-complete.

[SS18] can find non-singular solutions in time polyno-
mial in the number WSDRs after removing one edge
(generally > exp ⋅ #WSDRs).
Star of 𝑛+1 qu-𝑑-its (here 𝑛 = 6, 𝑑 = 3). For fixed
𝑑, #WSDR = poly(𝑛), even after removing an edge.
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Outlook
We have a a quantum problem that guarantees “simple/classical” so-
lution, but is also likely intractable.
⇒ Either QSAT with WSDR can be solved efficiently, or MHS-
completeness is a strong indicator for intractability.
Are there more complete problems for MHS?
Where does MHS lie in the TFNP hierarchy?
Is there an FPT for QSAT with WSDR?

Pinwheel Graph
Infinite family of efficiently solvable 2-QSAT instances on qutrits:
Γ𝑛: Binary tree of height 𝑛 (blue) with circularly connected layers
(black), and two edges from root to leaf (green).

WSDR: assign green edges to center, black to left, blue to child.
Solution: Arbitrary assignment 𝑣0 = (𝑥, 𝑦, 𝑧) (dehomogenize 𝑧 = 1).
This imposes rank-1 constraints on first ring 𝑣1, 𝑣2 (dep. on 𝑣0)
⇒ eff. reduces dim. of qutrits to 2
Replace qutrits with qubits, solve ring of qubits as linear system.
⇒ qubits are polynomials in 𝑥, 𝑦.
Reduce second ring to qubits with blue edges. Iterate until all rings
are reduced to qubits and assigned to polynomials in 𝑥, 𝑦.
Finally, green edges induce system of two bivariate polynomials of
degree 2𝑂(𝑛) . Solve using resultant.


