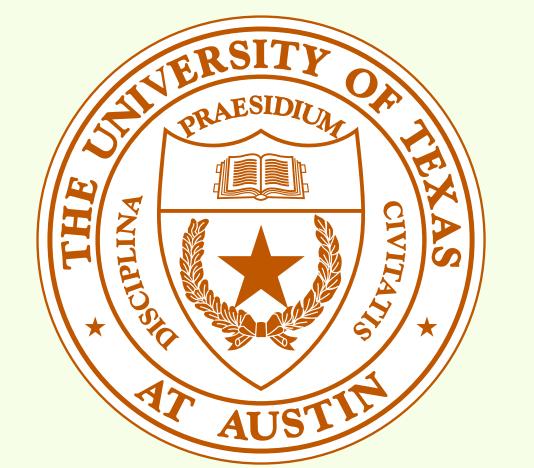


2510.06522

On the Pure Quantum Polynomial Hierarchy and Quantified Hamiltonian Complexity

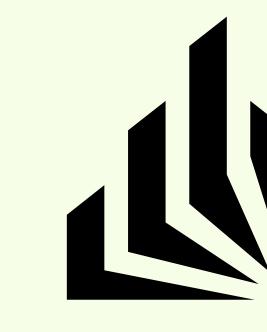


Sabee Grewal

The University of Texas at Austin

Dorian Rudolph

Paderborn University and PhoQS

PADERBORN
UNIVERSITY

The Polynomial Hierarchy (PH)

PH is a hierarchy of complexity classes generalizing NP. We *strongly* believe the levels are distinct (e.g., $P \neq NP$). The levels of PH are denoted Σ_k, Π_k for $k \geq 0$:

$$\Sigma_0 = \Pi_0 = P, \quad \Sigma_1 = NP, \quad \Pi_1 = coNP, \quad \Sigma_2 = NP^{NP}, \quad \Pi_2 = coNP^{NP}, \dots$$

Game-theoretic interpretation: $L \in \Sigma_k$ can equivalently be defined as a game:

- ▶ Alice and Bob exchange k messages with a poly-time *verifier* V
- ▶ Alice (\exists) wins if she can convince V that $x \in L$ (YES)
- ▶ Bob (\forall) wins if we can convince V that $x \notin L$ (NO)
- ▶ In the YES (resp. NO) case Alice (resp. Bob) always has a winning strategy

Formally: $x \in L \iff \exists y_1 \forall y_2 \dots \exists y_{k-1} \forall y_k : V(x, y_1, \dots, y_k) = 1$

How to define Quantum PH?

The oracle definition $QMA^{QMA^{\dots}}$ seems unnatural: Oracle barriers don't allow joint measurements on quantum witnesses.

⇒ Use quantifier/game definition! [GSS²², AGKR24, GY24]

Aside: $QMA^{QMA^{\dots}} \subseteq \text{PSPACE}$, but QPH vs. NEXP remains open!

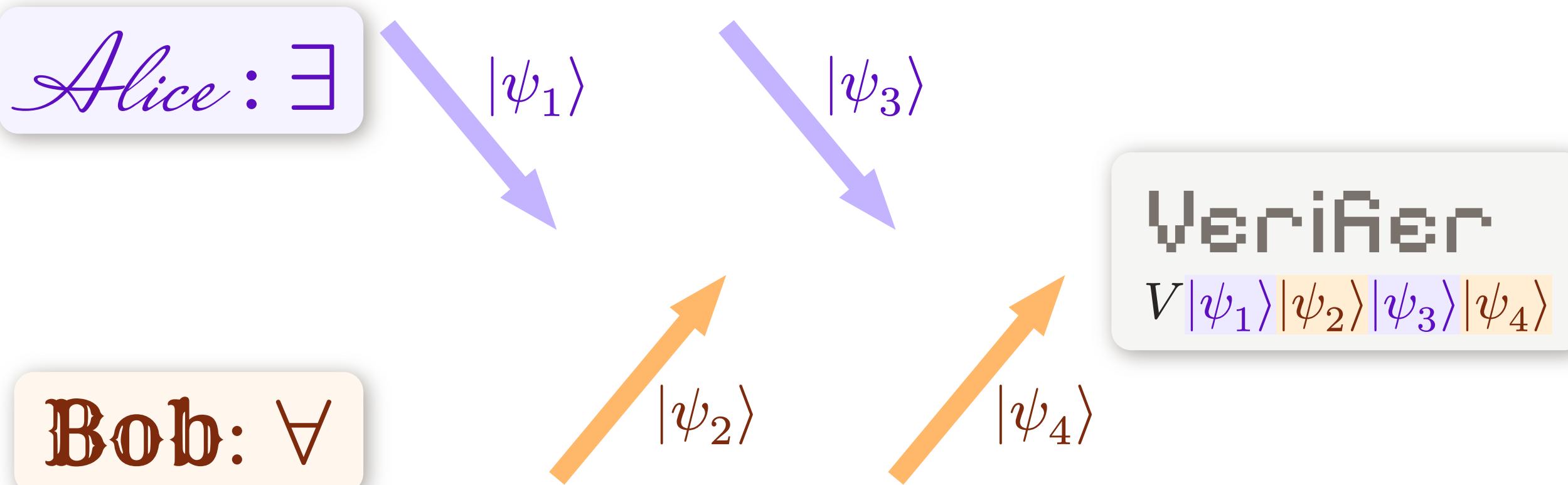


Figure 1. pureQ Σ_4

Formally: Promise problem $L = (L_{\text{yes}}, L_{\text{no}}) \in Q\Sigma_k$ (for even k) if

$$\begin{aligned} x \in L_{\text{yes}} &\implies \exists \rho_1 \forall \rho_2 \dots \exists \rho_{k-1} \forall \rho_k : \Pr[V_x(\rho_1 \otimes \dots \otimes \rho_k) = 1] \geq c \\ x \in L_{\text{no}} &\implies \forall \rho_1 \exists \rho_2 \dots \forall \rho_{k-1} \exists \rho_k : \Pr[V_x(\rho_1 \otimes \dots \otimes \rho_k) = 1] \leq s \end{aligned}$$

For $c - s \geq \frac{1}{\text{poly}(n)}$. Then QPH := $\bigcup_k Q\Sigma_k$.

Alternative: Define pureQPH analogously with pure states $|\psi_1\rangle, \dots, |\psi_k\rangle$.

Mixed vs. Pure

Which is the “right” definition: QPH or pureQPH?

- ▶ Trivial: $Q\Sigma_k \subseteq \text{pureQ}\Sigma_k$ by purification. ⇒ QPH ⊆ pureQPH.
- ▶ But $\text{pureQ}\Sigma_k$ seems more **powerful** than (mixed) $Q\Sigma_k$!

Theorem 1. $QMA(2) \subseteq \text{pureQ}\Sigma_2 \subseteq Q\Sigma_3 \subseteq \text{NEXP}$

▶ *Definition of QMA(2):* Like QMA but with unentangled witness, i.e.

$$\begin{aligned} x \in L_{\text{yes}} &\implies \exists |\psi_1\rangle \exists |\psi_2\rangle : \Pr[V_x(|\psi_1\rangle \otimes |\psi_2\rangle) = 1] \geq \frac{2}{3} \\ x \in L_{\text{no}} &\implies \forall |\psi_1\rangle \forall |\psi_2\rangle : \Pr[V_x(|\psi_1\rangle \otimes |\psi_2\rangle) = 1] \leq \frac{1}{3} \end{aligned}$$

▶ Evidence that $\text{pureQ}\Sigma_2 \neq Q\Sigma_2$ since $Q\Sigma_2 \subseteq \text{PSPACE}$ [GSS²²], but QMA(2) is conjectured to be much harder (might equal NEXP).

QMA(2) as non-convex max-min optimization: Approximate for POVM Π

$$\max_{|\psi\rangle} \min_{|\varphi\rangle} \text{Tr}(\Pi(|\psi\rangle\langle\psi| \otimes |\varphi\rangle\langle\varphi|)).$$

Amplification

- ▶ [HM13] shows amplification of QMA(2) to completeness $c = 1 - \frac{1}{\exp(n)}$ and soundness $s = \frac{1}{\exp(n)}$. Does not generalize to QPH due to “mixed vs. pure” issue and non-convexity.
- ▶ [AGKR24] gives *one-sided* amplification $c = 1 - \frac{1}{\exp}$, $s = 1 - \frac{1}{\text{poly}}$.
- ▶ **Amplification remained open** and thus definition required c, s parameters.

Theorem 2. $\text{pureQ}\Sigma_k(c, s) \subseteq Q\Sigma_{7k} \left(1 - \frac{1}{\text{poly}(n)}, \frac{1}{\text{poly}(n)}\right)$ for $c - s \geq \frac{1}{\text{poly}(n)}$.

Corollary. $QPH = \text{pureQPH}$

Disentanglers with poly-size support

Proof idea for amplification: Use [JW24] dimension-independent disentangler from unentanglement, mapping $\rho_1 \otimes \rho_2$ to $\int |\psi\rangle\langle\psi|^{\otimes k} d\mu(\psi)$ with error $\frac{1}{\text{poly}(n)}$.

- ▶ **Challenge:** JW disentangler creates mixed state. Alice knows the correct response to each $|\psi\rangle$, but she cannot send all!
- ▶ **Solution:** Disentangler creating mixed state with poly-size support.

Lemma. Efficient quantum channel $\Gamma : \mathcal{D}(\mathcal{H}^{\otimes \ell}) \rightarrow \mathcal{D}(\mathcal{H}^{\otimes k})$, s.t.

$$\left\| \Gamma(\rho_1 \otimes \rho_2 \otimes \rho_3 \otimes \rho_4) - \sum_{i=1}^m p_i |\eta_i\rangle\langle\eta_i|^{\otimes k} \right\|_1 \leq \delta,$$

where $\ell = \text{poly}(\delta^{-1}, k)$, $m = O(\delta^{-2})$, and $|\eta_i\rangle = |\eta_{i,1}\rangle \otimes \dots \otimes |\eta_{i,s}\rangle$.

- ▶ Now Alice can send tensor product of $|\eta_i, \psi_i\rangle$ for each of Bob's m $|\eta_i\rangle$'s.
- ▶ Verifier picks Alice's response via SWAP tests.

Quantified Hamiltonian problems

$\exists \forall$ quantified local Hamiltonian problem ($\exists \forall$ -MLH): Distinguish (YES) $\exists \rho \forall \sigma : \text{Tr}(H(\rho \otimes \sigma)) \leq a$ and (NO) $\forall \rho \exists \sigma : \text{Tr}(H(\rho \otimes \sigma)) \geq b$.

Proposition. $\exists \forall$ -MLH $\in \text{NP}^{QMA} \cap \text{coNP}^{QMA}$.

- ▶ No joint measurements needed!

Complete problems for levels of pureQPH:

- ▶ Define Pure-Sparse-Hamiltonian- Σ_k (PSH- Σ_k) analogously to Σ_k , but with *sparse Hamiltonian* H as objective function, e.g., PSH- Σ_2 :
 - (YES) $\exists |\psi\rangle \forall |\varphi\rangle : \text{Tr}(H(|\psi\rangle\langle\psi| \otimes |\varphi\rangle\langle\varphi|)) \leq a$
 - (NO) $\forall |\psi\rangle \exists |\varphi\rangle : \text{Tr}(H(|\psi\rangle\langle\psi| \otimes |\varphi\rangle\langle\varphi|)) \geq b$

Proposition. PSH- Σ_k /PSH- Π_k is pureQ Σ_k /pureQ Π_k -complete.

- ▶ MSH- $\Sigma_k \in Q\Sigma_k$, but hardness seems tricky – SWAP test needs pure states!

Takeaway. pureQPH is the “right” definition of *Quantum PH*.

Open questions

- ▶ Complete problems for other hierarchy variants?
 - Consider pure/local, mixed/local, or mixed/sparse Hamiltonian?
- ▶ Investigate NP^{QMA} vs QMA^{QMA} .
 - $\exists \forall$ -local Hamiltonian only needs quantumness in the oracle.
- ▶ Construct disentanglers with stronger guarantees.
 - Can the output always be close to a pure state?
- ▶ QPH vs. NEXP?

Figure 2. ★ = Our results.

References

- [AGKR24] Avantika Agarwal, Sevag Gharibian, Venkata Koppula, and Dorian Rudolph. “Quantum Polynomial Hierarchies: Karp-Lipton, Error Reduction, and Lower Bounds”. In: *49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)*. 2024.
- [GSS²²] Sevag Gharibian, Miklos Santha, Jamie Sikora, Aarthi Sundaram, and Justin Yirka. “Quantum Generalizations of the Polynomial Hierarchy with Applications to QMA(2)”. In: *computational complexity* 31.2 (2022).
- [GY24] Sabee Grewal and Justin Yirka. “The Entangled Quantum Polynomial Hierarchy Collapses”. In: *39th Computational Complexity Conference (CCC 2024)*. 2024.
- [HM13] Aram W. Harrow and Ashley Montanaro. “Testing Product States, Quantum Merlin-Arthur Games and Tensor Optimization”. In: *Journal of the ACM* 60.1 (2013).
- [JW24] Fernando Granha Jeronimo and Pei Wu. “Dimension Independent Disentanglers from Unentanglement and Applications”. In: *39th Computational Complexity Conference (CCC 2024)*. 2024.