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The Polynomial Hierarchy (PH)

PH is a hierarchy of complexity classes generalizing NP. We strongly believe the 

levels are distinct (e.g., P ≠ NP). The levels of PH are denoted Σ𝑘,Π𝑘 for 𝑘 ≥ 0:

Σ0 = Π0 = P, Σ1 = NP, Π1 = coNP, Σ2 = NPNP,Π2 = coNPNP,…

Game-theoretic interpration: 𝐿 ∈ Σ𝑘 can equivalently be defined as a game:
▶︎ Alice and Bob exchange 𝑘 messages with a poly-time verifier 𝑉
▶︎ Alice (∃) wins if she can convince 𝑉  that 𝑥 ∈ 𝐿 (YES)
▶︎ Bob (∀) wins if we can convince 𝑉  that 𝑥 ∉ 𝐿 (NO)
▶︎ In the YES (resp. NO) case Alice (resp. Bob) always has a winning strategy

Formally: 𝑥 ∈ 𝐿 ⟺ ∃𝑦1∀𝑦2 ⋯ ∃𝑦𝑘−1∀𝑦𝑘 : 𝑉 (𝑥, 𝑦1,…, 𝑦𝑘) = 1

How to define Quantum PH?

The oracle definition QMAQMA⋯  seems unnatural: Oracle barriers don’t allow 

joint measurements on quantum witnesses.

⟹ Use quantifier/game definition! [GSS⁺22, AGKR24, GY24]

Aside: QMAQMA⋯ ⊆ PSPACE, but QPH vs. NEXP remains open!

Alice : ∃

Bob: ∀

Verifier
𝑉 |𝜓1⟩|𝜓2⟩|𝜓3⟩|𝜓4⟩

|𝜓1⟩ |𝜓3⟩

|𝜓2⟩ |𝜓4⟩

Figure 1. pureQΣ4

Formally: Promise problem 𝐿 = (𝐿yes, 𝐿no) ∈ QΣ𝑘 (for even 𝑘) if

𝑥 ∈ 𝐿yes ⟹ ∃𝜌1∀𝜌2 ⋯ ∃𝜌𝑘−1∀𝜌𝑘 : Pr[𝑉𝑥(𝜌1 ⊗⋯⊗ 𝜌𝑘) = 1] ≥ 𝑐

𝑥 ∈ 𝐿no ⟹ ∀𝜌1∃𝜌2 ⋯ ∀𝜌𝑘−1∃𝜌𝑘 : Pr[𝑉𝑥(𝜌1 ⊗⋯⊗ 𝜌𝑘) = 1] ≤ 𝑠

For 𝑐 − 𝑠 ≥ 1
poly(𝑛) . Then QPH ≔ ⋃𝑘 QΣ𝑘.

Alternative: Define pureQPH analogously with pure states |𝜓1⟩,…, |𝜓𝑘⟩.

Mixed vs. Pure

Which is the “right” definition: QPH or pureQPH?
▶︎ Trivial: QΣ𝑘 ⊆ pureQΣ𝑘 by purification. ⟹ QPH ⊆ pureQPH.
▶︎ But pureQΣ𝑘 seems more powerful than (mixed) QΣ𝑘!

Theorem 1.  QMA(2) ⊆ pureQΣ2 ⊆ QΣ3 ⊆ NEXP

▶︎ Definition of QMA(2): Like QMA but with unentangled witness, i.e.

𝑥 ∈ 𝐿yes ⟹ ∃|𝜓1⟩∃|𝜓2⟩ : Pr[𝑉𝑥(|𝜓1⟩ ⊗ |𝜓2⟩) = 1] ≥ 2
3

𝑥 ∈ 𝐿no ⟹ ∀|𝜓1⟩∀|𝜓2⟩ : Pr[𝑉𝑥(|𝜓1⟩ ⊗ |𝜓2⟩) = 1] ≤ 1
3

▶︎ Evidence that pureQΣ2 ≠ QΣ2 since QΣ2 ⊆ PSPACE  [GSS⁺22], but 

QMA(2) is conjectured to be much harder (might equal NEXP).

QMA(2) as non-convex max-min optimization: Approximate for POVM Π
max
|𝜓⟩

min
|𝜑⟩

Tr(Π(|𝜓⟩⟨𝜓| ⊗ |𝜑⟩⟨𝜑|)).

Amplification

▶︎ [HM13] shows amplification of QMA(2) to completeness 𝑐 = 1 − 1
exp(𝑛)  and 

soundness 𝑠 = 1
exp(𝑛) . Does not generalize to QPH due to “mixed vs. pure” 

issue and non-convexity.
▶︎ [AGKR24] gives one-sided amplification 𝑐 = 1 − 1

exp , 𝑠 = 1 − 1
poly .

▶︎ Amplification remained open and thus definition required 𝑐, 𝑠 parameters.

Theorem 2.  pureQΣ𝑘(𝑐, 𝑠) ⊆ QΣ7𝑘(1 − 1
poly(𝑛) ,

1
poly(𝑛))  for 𝑐 − 𝑠 ≥ 1

poly(𝑛) .

Corollary. QPH = pureQPH

Disentanglers with poly-size support

Proof idea for amplification: Use [JW24] dimension-independent disentangler 

from unentanglement, mapping 𝜌1 ⊗ 𝜌2 to ∫ |𝜓⟩⟨𝜓|⊗𝑘 𝑑𝜇(𝜓) with error 1
poly(𝑛) .

▶︎ Challenge: JW disentangler creates mixed state. Alice knows the correct 

response to each |𝜓⟩, but she cannot send all!
▶︎ Solution: Disentangler creating mixed state with poly-size support.

Lemma.  Efficient quantum channel Γ : 𝒟︀(ℋ︀⊗ℓ) → 𝒟︀(ℋ︀⊗𝑘), s.t.

‖Γ(𝜌1 ⊗ 𝜌2 ⊗ 𝜌3 ⊗ 𝜌4) −∑
𝑚

𝑖=1
𝑝𝑖|𝜂𝑖⟩⟨𝜂𝑖|

⊗𝑘 ‖
1
≤ 𝛿,

where ℓ = poly(𝛿−1, 𝑘),𝑚 = 𝑂(𝛿−2), and |𝜂𝑖⟩ = |𝜂𝑖,1⟩ ⊗ ⋯⊗ |𝜂𝑖,𝑠⟩.

▶︎ Now Alice can send tensor product of |𝜂𝑖, 𝜓𝑖⟩ for each of Bob’s 𝑚 |𝜂𝑖⟩’s.
▶︎ Verifier picks Alice’s response via SWAP tests.

Quantified Hamiltonian problems

∃∀ quantified local Hamiltonian problem (∃∀-MLH):  Distinguish

(YES) ∃𝜌∀𝜎 : Tr(𝐻(𝜌 ⊗ 𝜎)) ≤ 𝑎   and   (NO) ∀𝜌∃𝜎 : Tr(𝐻(𝜌 ⊗ 𝜎)) ≥ 𝑏.

Proposition.  ∃∀-MLH ∈ NPQMA ∩ coNPQMA.

▶︎ No joint measurements needed!

Complete problems for levels of pureQPH:

▶︎ Define Pure-Sparse-Hamiltonian-Σ𝑘 (PSH-Σ𝑘) analogously to Σ𝑘, but with 

sparse Hamiltonian 𝐻  as objective function, e.g., PSH-Σ2:

• (YES)   ∃|𝜓⟩∀|𝜑⟩ : Tr(𝐻(|𝜓⟩⟨𝜓| ⊗ |𝜑⟩⟨𝜑|)) ≤ 𝑎
• (NO) ∀|𝜓⟩∃|𝜑⟩ : Tr(𝐻(|𝜓⟩⟨𝜓| ⊗ |𝜑⟩⟨𝜑|)) ≥ 𝑏

Proposition.  PSH-Σ𝑘/PSH-Π𝑘 is pureQΣ𝑘/pureQΠ𝑘-complete.

▶︎ MSH-Σ𝑘 ∈ QΣ𝑘, but hardness seems tricky — SWAP test needs pure states!

Takeaway.  pureQPH is the “right” definition of Quantum PH.
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Figure 2. ★= Our results.

Open questions

▶︎ Complete problems for other 

hierarchy variants?

• Consider pure/local, mixed/local, or 

mixed/sparse Hamiltonian?

▶︎ Investigate NPQMA vs QMAQMA.

• ∃∀-local Hamiltonian only needs 

quantumness in the oracle.

▶︎ Construct disentanglers with stronger 

guarantees.

• Can the output always be close to a 

pure state?

▶︎ QPH vs. NEXP?

References

[AGKR24] Avantika Agarwal, Sevag Gharibian, Venkata Koppula, and Dorian Rudolph. “Quantum 

Polynomial Hierarchies: Karp-Lipton, Error Reduction, and Lower Bounds”. In: 49th International 

Symposium on Mathematical Foundations of Computer Science (MFCS 2024). 2024.

[GSS⁺22] Sevag Gharibian, Miklos Santha, Jamie Sikora, Aarthi Sundaram, and Justin Yirka. “Quantum 

Generalizations of the Polynomial Hierarchy with Applications to QMA(2)”. In: computational 

complexity 31.2 (2022).

[GY24] Sabee Grewal and Justin Yirka. “The Entangled Quantum Polynomial Hierarchy Collapses”. In: 

39th Computational Complexity Conference (CCC 2024). 2024.

[HM13] Aram W. Harrow and Ashley Montanaro. “Testing Product States, Quantum Merlin-Arthur Games 

and Tensor Optimization”. In: Journal of the ACM 60.1 (2013).

[JW24] Fernando Granha Jeronimo and Pei Wu. “Dimension Independent Disentanglers from 

Unentanglement and Applications”. In: 39th Computational Complexity Conference (CCC 2024). 

2024.

https://doi.org/10.4230/LIPIcs.MFCS.2024.7
https://doi.org/10.4230/LIPIcs.MFCS.2024.7
https://doi.org/10.1007/s00037-022-00231-8
https://doi.org/10.1007/s00037-022-00231-8
https://doi.org/10.4230/LIPIcs.CCC.2024.6
https://doi.org/10.1145/2432622.2432625
https://doi.org/10.1145/2432622.2432625
https://doi.org/10.4230/LIPIcs.CCC.2024.26
https://doi.org/10.4230/LIPIcs.CCC.2024.26

	The Polynomial Hierarchy (PH)
	How to define Quantum PH?
	Mixed vs. Pure
	Amplification
	Disentanglers with poly-size support
	Quantified Hamiltonian problems
	Open questions
	References

