

On polynomially many queries to NP or QMA oracles

Sevag Gharibian Dorian Rudolph

Introduction

What lies beyond NP?

- Stockmeyer [7] introduces the *polynomial hierarchy* $\mathrm{PH} = \mathrm{P}^{\mathrm{NP}^{\mathrm{NP}^{\cdot}}}$
- On the second level of PH is $\Delta_2^P = P^{NP}$.
- P^{NP}: A poly-time Turing machine has access to an oracle for a NP-complete problem.
- Note: $\operatorname{coNP} \subseteq \operatorname{P}^{\operatorname{NP}}$.
- What if we restrict the Turing machine's queries?
- $P^{NP[\log]}$: TM may ask at most $O(\log n)$ oracle queries.
- $P^{\parallel NP}$: TM must ask all queries at the same time.

Query graphs allow a finer restriction:

- Generally, in P^{NP} the *i*-th query may depend on the answers to prior queries.
- We can model these dependencies as a graph, each node representing a circuit performing a single query based on prior answers (Fig. 1).

Proof sketch — QMA-DAG_s \subseteq P^{QMA[log]}

Theorem: QMA-DAG_s \subseteq P^{QMA[log]} for s = O(1).

Proof: similar structure to Gottlob [3], but with novel graph transformation, total solution weight function, and verification procedure to deal with QMA and promise problems.

- Model QMA-queries as QMA-circuits Q_i with proof $|\psi_i\rangle$ and input $z_i = \bigcap_{j \to i} x_j$ (Fig. 3).
- Each node v_i implicitly defines a promise problem $\Pi^i \in \text{QMA}$.
- $x_i = 1$ if $z_i \in \Pi_{\text{ves}}^i$, $x_i = 0$ if $z_i \in \Pi_{\text{no}}^i$.
- If $z_i \in \Pi_{inv}^i$ (promise problem!), then $x_i = 0/1$ (nondeterministic).
- However, for a valid query graph $x_n = 1$ (or 0), for all nondeterministic choices.
- **Goal:** Compute x_n with $O(\log n)$ QMA-queries.
- Idea: Total solution weight function

Figure 7. Graph G'' with merged redundant nodes (indicated by *)

Total solution weight function:

- g_i penalizes incorrect x_i :
 - An acc. proof increases weight by $\geq 1/6$ over non-acc. (assuming 2/3, 1/3 completeness/soundness parameters)

Lemmas:

 x_3

 $|\psi_3\rangle$

Figure 3. Query graph

 $|\psi_1\rangle$

with proofs

 x_2

 x_2

 $|\psi_2\rangle$

Figure 1. General (complete) query graph

- By the restricting the graph structure, we obtain classes between $P^{\parallel NP} = P^{NP[\log]}$ [5] and P^{NP} .
- $P^{\parallel NP}$ has non-adaptive queries (Fig. 2).

Figure 2. Query graph of adaptive queries (output node o simulates postprocessing by the TM)

• Gottlob [3] considers the restriction of query graphs to trees and shows $TREES(NP) = P^{NP[log]}$.

Quantum: Do the $P^{NP[log]}$ results translate to QMA?

- Known: $P^{\parallel QMA} = P^{QMA}$ [2] (also for StoqMA).
- Previously open: Can QMA query trees be evaluated with $O(\log n)$ QMA-queries, i.e., TREES(QMA) = $P^{QMA[\log]}$?

Main Results

Our results hold for various complexity classes. Let $C \in$ $\{NP, MA, QCMA, QMA, QMA(2), NEXP, QMA_{exp}, NEXP\}.$

- $t(x, \psi_1, \dots, \psi_n) = \sum_{i=1}^n f(v_i)g_i(x_i, z_i, \psi_i)$ should be maximal for correct $x, \psi_1, \ldots, \psi_n$.
- g_i penalizes accepting/rejecting proof for $x_i = 0/1$.
- Admissable weighting function $f: f(v) \ge 1 + c \sum_{v \to w} f(w)$ for a chosen constant c > 1.
 - Prioritize satisfying queries with more descendants.
 - $\omega(v) := (c+1)^{|\operatorname{Desc}(v)|}$ is admissable, $\operatorname{Desc}(v)$ denoting the descendants of v in G.
- If $f(v) \leq \operatorname{poly}(n)$, we can approximate $T := \max t(\cdots)$ with $O(\log n)$ QMA-queries.
- However, f may be exponential in general!

Graph transformation: Ensure $f \leq poly(n)$.

Split graph recursively using balanced separators to build a separator tree (Fig. 4).

- Supernodes (dashed) are separators in subgraph induced by descendants.
- Edges of *G* need not follow separator tree structure: output node is y_2 .
- Height of separator tree is $O(\log n)$, separator size s(G).

To transform G to G', create copies of every node conditioned on nodes above and in the same separator (Fig. 5).

- Can determine whether $T \ge s$ or $T \le s \varepsilon$ with QMA-queries ($T = \max t(\cdots)$).
- If $t(x, \psi_1, \dots, \psi_n) \ge T \varepsilon$, then x is correct.

Therefore, we can determine output x_n using binary search, proving QMA-DAG_s \subseteq P^{QMA[log]}.

Reduction sketch to APX-SIM

Goal: Given QMA-DAG G with s(G) = O(1), construct an equivalent APX-SIM-instance with a given circuit-to-Hamiltonian mapping $H_{\rm W}$.

Use QMA-verifier V (Fig. 8) estimating T, operating on registers $\mathcal{X} \otimes \mathcal{Y}_1 \otimes \cdots \otimes \mathcal{Y}_n$ (query string and proofs), output q_{flag} :

 $-x_N$

 $-q_{\mathrm{flag}}$

 $|\psi_1\rangle$

 $|\psi_N\rangle$

Figure 8. Verifier

estimating T

- Measure \mathcal{X} in standard basis to obtain query string x.
- Select i with probability $p_i := f(v_i)/W.$
- If $x_i = 1$, return output of $Q_i(z_i, \mathcal{Y}_i)$.
- Else, output 1 with probability 1/2.

Then,

 $\max_{|\psi\rangle} \Pr[V(|\psi\rangle) = 1] = T/W$

- Ground state of Hamiltonian $H_{\rm W}(V)$ is the history state $|\phi\rangle = \sum_{i=0}^{L} (V_i \cdots V_1 |\phi_0\rangle) |i\rangle.$
- Define APX-SIM instance:
 - Hamiltonian $H := \alpha H_{\mathrm{W}}(V) + |0\rangle \langle 0|_{q_{\mathrm{flag}}} \otimes |L\rangle \langle L|$
 - $\alpha H_{\rm W}(V)$ ensures ground state is a history state.
 - $|0\rangle\langle 0|_{q_{\text{flag}}} \otimes |L\rangle\langle L|$ ensures $|\phi_0\rangle$ maximizes acc. prob.

Figure 4. G with separator tree (dashed)

Definition:

- C-DAG_s: Query graph has bounded separator number s.
- s(G): minimum s, such that every subgraph of G has a balanced separator of size < s.
- $s(G) \leq O(tw(G)) \leq O(\log n \cdot s(G))$ [4].
- C-DAG_d: Query graph has bounded depth d.

Selected Theorems:

• C-DAG_s \subseteq DTIME $(2^{O(s(n)\log(n))})^{C[s(n)\log(n)]}$.

 \Rightarrow C-DAG_s = P^{C[log(n)]} for s(n) = O(1).

- Includes query graphs of bounded treewidth.
- $\Rightarrow C\text{-DAG}_s \subseteq \operatorname{QP}^{C[\log^{k+1}(n)]}$ for $k \in \mathbb{N}$ and $s(n) = \log^k(n)$.
 - First quasi-polynomial bounds.
- Analogous results hold for C-DAG_d (d = depth).
- These results are the first progress on P^{NP} since '95.

Embedding C-DAG into APX-SIM

The Approximate Simulation problem (APX-SIM) is $P^{QMA[log]}$ complete [1] (simulate measurements on Hamiltonian's ground state).

- Lifting Lemma [8] embeds $P^{\parallel QMA}$ into APX-SIM, preserving geometric properties (e.g. locality) of the circuit-to-Hamiltonian mapping.
 - Geometric properties model actual physical systems.
 - *Circuit-to-Hamiltonian* mappings embed QMA-queries into a Hamiltonian's ground state [6].

We extend the lifting lemma to the

Figure 5. Transformed graph G' with output node (dashed)

- E.g., $v_2^{z_1,z_2}$ assumes outputs z_1, z_2 for u_1, u_2, v_1, v_2 .
 - Chooses copy of x_2 conditionally, using output of x_1 .
 - Hence, v_2 no longer depends on v_1 , and x_2 on x_1 .
- Output node t computes correct z_1, z_2, z_3 and returns output of $y_2^{z_1, z_2, z_3}$ (copy of *G*'s output node).
- G' has only edges to ancestors in the separator tree.
 - Nodes have $O(s \log(n))$ descendants and $\omega(v) \le \operatorname{poly}(n)$.

Inconsistency problem: Construction so far works for NP, but not promise problems.

- Invalid queries have nondeterministic outputs $(z_i \in \Pi_{inv}^i).$
- Creating multiple copies of an invalid query can lead to a wrong output (Fig. 6).
- **Solution:** Transform G' to

• Measurement $A := |0\rangle \langle 0|x_N$ checks output of G.

Hence, the ground state of H is a history state with $|\phi_0\rangle =$ $|x\rangle|\psi_1\rangle\cdots|\psi_N\rangle$ maximizing $t(x,\psi_1,\ldots,\psi_N)$. x is a correct query string with output x_N .

Open Problems

- Extend results to other classes such as QMA₁, UQMA, or StoqMA (d = O(1) result also holds for StoqMA).
- Does tw(G) = O(s(G)) hold?
- Compute or approximate separator trees efficiently.
 - For C-DAG_s brute force is good enough.
 - However, there exist graphs G with O(1)-size separator tree, but $s(G) = \Theta(\log(n))$.
- We show for $s(n) = \log^k(n)$, C-DAG_s $(C) \subseteq QP^{C[\log^{k+1}(n)]}$. Can we improve the base to P?

References

A. Ambainis. In: CCC. 2014, pp. 32-43.

S. Gharibian, S. Piddock, and J. Yirka. In: STACS. Vol. 154. 2020, 20:1–20:37. [2]

- G. Gottlob. In: J. ACM 42.2 (Mar. 1995), pp. 421–457. [3]
- H. Gruber. In: J. Comb. 3.4 (2012), pp. 669-681. [4]
- [5] L. A. Hemachandra. In: J. Comput. Syst. Sci. 39.3 (Dec. 1989), pp. 299–322.
- A. Y. Kitaev, A. H. Shen, and M. N. Vyalyi. 2002. [6]
- L. J. Stockmeyer. In: *Theor. Comput. Sci.* 3.1 (Oct. 1976), pp. 1–22. [7]
- J. D. Watson, J. Bausch, and S. Gharibian. 2020. arXiv: 2012.12717 [quant-ph]. [8]

Figure 6. Copies of invalid queries

actual dependencies of v are equal.

