Introduction

What lies beyond NP?

= Stockmeyer [7] introduces the polynomial hierarchy
PH = PNP
» On the second level of PH is AL = PNP,

« PNP2 A poly-time Turing machine has access to an oracle for
a NP-complete problem.

- Note: coNP C PP,
What if we restrict the Turing machine’s queries?

« PNPllogl: TM may ask at most O(log n) oracle queries.
« PINP: TM must ask all queries at the same time.

Query graphs allow a finer restriction:

= Generally, in PNY the i-th query may depend on the
answers to prior queries.

* \WWe can model these dependencies as a graph, each node
representing a circuit performing a single query based on
prior answers (Fig. 1).

Figure 1. General (complete) query graph

= By the restricting the graph structure, we obtain classes
between PINP — pNP{log] (5] and PN,

« PINP K55 non-adaptive queries (Fig. 2).
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Figure 2. Query graph of adaptive queries (output node o simulates
postprocessing by the TM)

= Gottlob [3] considers the restriction of query graphs to
trees and shows TREES(NP) = pNPllog],

Quantum: Do the PNPIog) results translate to QMA?

» Known: PIQMA — pQMA 9] (4150 for StogqMA).

* Previously open: Can QMA query trees be evaluated with
O(log n) QMA-queries, i.e., TREES(QMA) = PQMA[log]?

Main Results

Our results hold for various complexity classes. Let C' €
{NP, MA, QCMA, QMA, QMA(2), NEXP, QMA,, NEXP}.

Definition:

= C-DAGg,: Query graph has bounded separator number s.

= 5((G): minimum s, such that every subgraph of G has a
balanced separator of size < s.
= 3(G) < O(tw(G@)) < O(logn - s(G)) 14].
= C-DAG,: Query graph has bounded depth d.

Selected Theorems:

» C-DAG, C DTIME(20(s(n)log(n))yCls(n) log(n)],

— (C-DAG, = PClos(m)] for s(n) = O(1).
= [ncludes query graphs of bounded treewidth.

= (C-DAGg C QPCUngH(nﬂ for k € N and s(n) = logh(n).
= First quasi-polynomial bounds.

= Analogous results hold for C-DAG (d = depth).

These results are the first progress on PN since '95.

Embedding C-DAG into APX-SIM

The Approximate Simulation problem (APX-SIM) is pQMAllog]|.
complete [1] (simulate measurements on Hamiltonian's ground
state).

= Lifting Lemma [8] embeds PIQMA intg APX-SIM, preserving
geometric properties (e.g. locality) of the
circuit-to-Hamiltonian mapping.
= Geometric properties model actual physical systems.
= Circuit-to-Hamiltonian mappings embed QMA-queries
into a Hamiltonian's ground state [6].

We extend the lifting lemma to the

Generalized Lifting Lemma: Poly-time many-one reduction
from C-DAGg, C-DAG (d, s = O(1)), satisfying geometric prop-
erties of circuit-to-Hamiltonian mapping.
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Proof sketch — QMA-DAG, C pQMAllog]

Theorem: QMA-DAG, C PQMAllog] for ¢ = O(1).

Proof: similar structure to Gottlob [3], but with novel graph
transformation, total solution weight function, and verification
procedure to deal with QMA and promise problems.

= Model QMA-queries as QMA-circuits Z4
Q); with proof |¢;) and input '
" Each node v; implicitly defines a 4 -
promise problem II* € QMA.
=, =1 I]C.ZZ' € g ¥y = 01f 2; € 1T, /> 2
" If z; € II} . (promise problem!), then ¥3) , ,
1 2

x; = 0/1 (nondeterministic).
= However, for a valid query graph

~Q) | @

xn, = 1 (or 0), for all nondeterministic l41) [19)
choices.
= Goal: Compute z,, with O(log n) Figure 3. Query graph

with proofs

QMA-queries.

= |[dea: Total solution weight function
t(z, 1, n) =00 f(vi)gi(zg, zi,¥;) should be maximal
for correct x, 11, ..., Un.
= g, penalizes accepting/rejecting proof for z; = 0/1.

= Admissable weighting function f: f(v) > 1+c¢ ), ., f(w)
for a chosen constant ¢ > 1.
= Prioritize satisfying queries with more descendants.
= w(v) := (c+ 1)Pescv)l is admissable, Desc(v) denoting the

descendants of v in G.

= If f(v) < poly(n), we can approximate 1" := max t(- - -) with
O(logn) QMA-queries.

= However, f may be exponential in general!

Graph transformation: Ensure f < poly(n).

Split graph recursively using balanced separators to build a
separator tree (Fig. 4).

= Supernodes (dashed)
are separators In
subgraph induced by
descendants.

= Edges of G need not
follow separator tree
structure: output
node is y»o.

= Height of separator
tree is O(logn),
separator size s(G).

Figure 4. G with separator tree (dashed)

To transform G to G/, create copies of every node conditioned
on nodes above and in the same separator (Fig. 5).
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Figure 5. Transformed graph G’ with output node (dashed)

* E.g., v;1"2 assumes outputs 21, 2o for uy, ug, vy, va.
= Chooses copy of x9 conditionally, using output of 7.

= Hence, v9 no longer depends on vy, and z9 on 7.

= Qutput node ¢t computes correct zq, 29, z3 and returns
output of y5"** (copy of G's output node).

» ! has only edges to ancestors in the separator tree.

= Nodes have O(slog(n)) descendants and w(v) < poly(n).

Inconsistency problem: Construction so far works for NP, but
not promise problems.

= |nvalid queries have
nondeterministic outputs
S d & W
= Creating multiple copies of @ é

Figure 6. Copies of invalid queries
can cause wrong output.

an invalid query can lead to
a wrong output (Fig. 6).

= Solution: Transform G’ to
G" by merging redundant
copies (Fig. 7).

= Copies v~, v? are redundant if bits of 2, 2’ corresponding to
actual dependencies of v are equal.
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Figure 7. Graph G” with merged redundant nodes (indicated by x)

Total solution weight function:

bt n) = ) f(uv;) (93@ Pr(Qi(z;, i) = 1] + (1 — ilfz')%),
i=1 N

S

9i(@i, 2, i)
= g; penalizes incorrect x;:

= An acc. proof increases weight by > 1/6 over non-acc.
(assuming 2/3, 1/3 completeness/soundness parameters)

Lemmas:

= Can determine whetherT' > sorT < s — ¢ with
QMA-queries (T" = max t(- - )).

= [ft(x,Y1,...,0y) >T — ¢, then x is correct.

Therefore, we can determine output z,, using binary search,
proving QMA-DAG, C pQMAllog]

Reduction sketch to APX-SIM

Goal: Given QMA-DAG G with s(G) = O(1), construct
an equivalent APX-SIM-instance with a given circuit-to-
Hamiltonian mapping Hy.

Use QMA-verifier V (Fig. 8) estimating T', operating on registers
X RV ®---® Y, (query string and proofs), output Qflag’

= Measure X in standard basis to
obtain query string .

— S
= Select ¢ with probability z) qN
pi = flvi)/W. 1) v flag
= |f x; = 1, return output of Q;(z;, V). -
= Else, output 1 with probability 1/2. 1YN)
Then, . .
Figure 8. Verifier
max Pr|V(|y)) = 1] =T/W estimating T

)

= Ground state of Hamiltonian Hy (V') is the history state

6) = Sizo(Vi+ - Vildo)li):
* Define APX-SIM instance:
= Hamiltonian H := aHyw (V') + |0)(0]gy,, ® [L)(L|
« aHy (V) ensures ground state is a history state.
* |0)(Olgg,, ® [L){L] ensures [¢g) maximizes acc. prob.

= Measurement A := |0)(0|x checks output of G.

Hence, the ground state of H is a history state with |¢g) =

lz)|1p1) - - - |) maximizing t(x, ¥, ..., ¥N). x IS a correct
query string with output z .

Open Problems

= Extend results to other classes such as QMA{, UQMA, or
StogMA (d = O(1) result also holds for StogMA).

* Does tw(G) = O(s(G)) hold?
= Compute or approximate separator trees efficiently.

= For C-DAGg brute force is good enough.
= However, there exist graphs G with O(1)-size separator
tree, but s(G) = O(log(n)).

* We show for s(n) = logF(n), C-DAG,(C) € QPCllog"(n)],
Can we improve the base to P?
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