
On polynomiallymany queries to NP or QMA oracles
Sevag Gharibian Dorian Rudolph

Introduction

What lies beyond NP?

Stockmeyer [7] introduces the polynomial hierarchy

PH = PNPNP...
.

On the second level of PH is ∆P
2 = PNP.

PNP: A poly-time Turing machine has access to an oracle for
a NP-complete problem.
Note: coNP ⊆ PNP.

What if we restrict the Turing machine’s queries?

PNP[log]: TM may ask at most O(log n) oracle queries.
P‖NP: TM must ask all queries at the same time.

Query graphs allow a finer restriction:

Generally, in PNP the i-th query may depend on the
answers to prior queries.

We can model these dependencies as a graph, each node

representing a circuit performing a single query based on

prior answers (Fig. 1).

q1 q2 q3 · · · qn

Figure 1. General (complete) query graph

By the restricting the graph structure, we obtain classes

between P‖NP = PNP[log] [5] and PNP.
P‖NP has non-adaptive queries (Fig. 2).

q1 q2 q3 · · · qn

o

Figure 2. Query graph of adaptive queries (output node o simulates
postprocessing by the TM)

Gottlob [3] considers the restriction of query graphs to

trees and shows TREES(NP) = PNP[log].

Quantum: Do the PNP[log] results translate to QMA?

Known: P‖QMA = PQMA [2] (also for StoqMA).
Previously open: Can QMA query trees be evaluated with
O(log n) QMA-queries, i.e., TREES(QMA) = PQMA[log]?

Main Results

Our results hold for various complexity classes. Let C ∈
{NP,MA,QCMA,QMA,QMA(2),NEXP,QMAexp,NEXP}.
Definition:

C-DAGs: Query graph has bounded separator number s.

s(G): minimum s, such that every subgraph of G has a
balanced separator of size ≤ s.
s(G) ≤ O(tw(G)) ≤ O(log n · s(G)) [4].

C-DAGd: Query graph has bounded depth d.

Selected Theorems:

C-DAGs ⊆ DTIME(2O(s(n) log(n)))C[s(n) log(n)].
⇒ C-DAGs = PC[log(n)] for s(n) = O(1).

Includes query graphs of bounded treewidth.

⇒ C-DAGs ⊆ QPC[logk+1(n)] for k ∈ N and s(n) = logk(n).
First quasi-polynomial bounds.

Analogous results hold for C-DAGd (d = depth).

These results are the first progress on PNP since ’95.

Embedding C-DAG into APX-SIM
The Approximate Simulation problem (APX-SIM) is PQMA[log]-
complete [1] (simulate measurements on Hamiltonian’s ground

state).

Lifting Lemma [8] embeds P‖QMA into APX-SIM, preserving
geometric properties (e.g. locality) of the

circuit-to-Hamiltonian mapping.

Geometric properties model actual physical systems.

Circuit-to-Hamiltonian mappings embed QMA-queries
into a Hamiltonian’s ground state [6].

We extend the lifting lemma to the

Generalized Lifting Lemma: Poly-time many-one reduction

fromC-DAGs, C-DAGd (d, s = O(1)), satisfying geometric prop-
erties of circuit-to-Hamiltonian mapping.

Proof sketch — QMA-DAGs ⊆ PQMA[log]

Theorem: QMA-DAGs ⊆ PQMA[log] for s = O(1).
Proof: similar structure to Gottlob [3], but with novel graph

transformation, total solution weight function, and verification

procedure to deal with QMA and promise problems.
Model QMA-queries as QMA-circuits
Qi with proof |ψi〉 and input
zi = ©j→ixj (Fig. 3).

Each node vi implicitly defines a
promise problem Πi ∈ QMA.
xi = 1 if zi ∈ Πiyes, xi = 0 if zi ∈ Πino.

If zi ∈ Πiinv (promise problem!), then
xi = 0/1 (nondeterministic).
However, for a valid query graph

xn = 1 (or 0), for all nondeterministic
choices.

Goal: Compute xn with O(log n)
QMA-queries.

Q1 Q2

Q3

Q4

|ψ1〉 |ψ2〉

|ψ3〉

|ψ4〉

x1 x2

x2

x3

x4

Figure 3. Query graph

with proofs

Idea: Total solution weight function

t(x, ψ1, . . . , ψn) =
∑n
i=1 f (vi)gi(xi, zi, ψi) should be maximal

for correct x, ψ1, . . . , ψn.
gi penalizes accepting/rejecting proof for xi = 0/1.

Admissable weighting function f : f (v) ≥ 1 + c
∑
v→w f (w)

for a chosen constant c > 1.
Prioritize satisfying queries with more descendants.

ω(v) := (c + 1)|Desc(v)| is admissable, Desc(v) denoting the
descendants of v in G.

If f (v) ≤ poly(n), we can approximate T := max t(· · ·) with
O(log n) QMA-queries.
However, f may be exponential in general!

Graph transformation: Ensure f ≤ poly(n).
Split graph recursively using balanced separators to build a

separator tree (Fig. 4).

Supernodes (dashed)

are separators in

subgraph induced by

descendants.

Edges of G need not
follow separator tree

structure: output

node is y2.
Height of separator

tree is O(log n),
separator size s(G).

u1 u2

v1 v2 w1 w2

x1 x2 y1 y2

Figure 4. G with separator tree (dashed)

To transform G to G′, create copies of every node conditioned
on nodes above and in the same separator (Fig. 5).

uz1
1 uz1

2

vz1,z21 vz1,z22 wz1,z2
1 wz1,z2

2

xz1,z2,z3
1 xz1,z2,z3

2 yz1,z2,z31 yz1,z2,z32 ∀z1, z2, z3 ∈ {0, 1}2

∀z1, z2 ∈ {0, 1}2

∀z1 ∈ {0, 1}2

t

Figure 5. Transformed graph G′ with output node (dashed)

E.g., v
z1,z2
2 assumes outputs z1, z2 for u1, u2, v1, v2.

Chooses copy of x2 conditionally, using output of x1.
Hence, v2 no longer depends on v1, and x2 on x1.

Output node t computes correct z1, z2, z3 and returns
output of y

z1,z2,z3
2 (copy of G’s output node).

G′ has only edges to ancestors in the separator tree.
Nodes have O(s log(n)) descendants and ω(v) ≤ poly(n).

Inconsistency problem: Construction so far works for NP, but
not promise problems.

Invalid queries have

nondeterministic outputs

(zi ∈ Πiinv).
Creating multiple copies of

an invalid query can lead to

a wrong output (Fig. 6).

Solution: Transform G′ to
G′′ by merging redundant
copies (Fig. 7).

⊕

I I

?

⊕

I I

0 1

Figure 6. Copies of invalid queries

can cause wrong output.

Copies vz, vz
′
are redundant if bits of z, z′ corresponding to

actual dependencies of v are equal.

u∗∗1 u
z1,1∗
2

v∗∗,∗∗1 v
∗∗,z2,1∗
2 wz1,∗∗

1 w
z1,z2,1∗
2

x
∗∗,z2,1∗,∗∗
1 x

∗∗,z2,1∗,z3,1∗
2 y∗∗,∗∗,∗∗1 y

z1,z2,z3,1∗
2 ∀z1, z2, z3 ∈ {0, 1}2

∀z1, z2 ∈ {0, 1}2

∀z1 ∈ {0, 1}2

t

Figure 7. Graph G′′ with merged redundant nodes (indicated by ∗)

Total solution weight function:

t(x, ψ1, . . . , ψn) =
n∑
i=1

f (vi)
(
xiPr[Qi(zi, ψi) = 1] + (1 − xi)

1
2︸ ︷︷ ︸

gi(xi, zi, ψi)

)
,

gi penalizes incorrect xi:

An acc. proof increases weight by ≥ 1/6 over non-acc.
(assuming 2/3, 1/3 completeness/soundness parameters)

Lemmas:

Can determine whether T ≥ s or T ≤ s− ε with
QMA-queries (T = max t(· · ·)).
If t(x, ψ1, . . . , ψn) ≥ T − ε, then x is correct.

Therefore, we can determine output xn using binary search,
proving QMA-DAGs ⊆ PQMA[log].

Reduction sketch to APX-SIM

Goal: Given QMA-DAG G with s(G) = O(1), construct
an equivalent APX-SIM-instance with a given circuit-to-
Hamiltonian mapping Hw.

UseQMA-verifierV (Fig. 8) estimating T , operating on registers
X ⊗ Y1 ⊗ · · · ⊗ Yn (query string and proofs), output qflag:

Measure X in standard basis to

obtain query string x.

Select i with probability
pi := f (vi)/W .
If xi = 1, return output of Qi(zi,Yi).
Else, output 1 with probability 1/2.

Then,

max
|ψ〉

Pr[V (|ψ〉) = 1] = T/W

|x〉

V

xN

|ψ1〉 qflag
...

|ψN〉

Figure 8. Verifier

estimating T

Ground state of Hamiltonian Hw(V) is the history state
|φ〉 =

∑L
i=0(Vi · · ·V1|φ0〉)|i〉.

Define APX-SIM instance:

Hamiltonian H := αHw(V) + |0〉〈0|qflag ⊗ |L〉〈L|
αHw(V) ensures ground state is a history state.
|0〉〈0|qflag ⊗ |L〉〈L| ensures |φ0〉 maximizes acc. prob.

Measurement A := |0〉〈0|xN checks output of G.

Hence, the ground state of H is a history state with |φ0〉 =
|x〉|ψ1〉 · · · |ψN〉 maximizing t(x, ψ1, . . . , ψN). x is a correct
query string with output xN .

Open Problems

Extend results to other classes such as QMA1, UQMA, or
StoqMA (d = O(1) result also holds for StoqMA).
Does tw(G) = O(s(G)) hold?
Compute or approximate separator trees efficiently.

For C-DAGs brute force is good enough.
However, there exist graphs G with O(1)-size separator
tree, but s(G) = Θ(log(n)).

We show for s(n) = logk(n), C-DAGs(C) ⊆ QPC[logk+1(n)].
Can we improve the base to P?

References

[1] A. Ambainis. In: CCC. 2014, pp. 32–43.

[2] S. Gharibian, S. Piddock, and J. Yirka. In: STACS. Vol. 154. 2020, 20:1–20:37.

[3] G. Gottlob. In: J. ACM 42.2 (Mar. 1995), pp. 421–457.

[4] H. Gruber. In: J. Comb. 3.4 (2012), pp. 669–681.

[5] L. A. Hemachandra. In: J. Comput. Syst. Sci. 39.3 (Dec. 1989), pp. 299–322.

[6] A. Y. Kitaev, A. H. Shen, and M. N. Vyalyi. 2002.

[7] L. J. Stockmeyer. In: Theor. Comput. Sci. 3.1 (Oct. 1976), pp. 1–22.

[8] J. D. Watson, J. Bausch, and S. Gharibian. 2020. arXiv: 2012.12717 [quant-ph].

QIP 2022 Poster #27 {sevag.gharibian,dorian.rudolph}@upb.de

https://arxiv.org/abs/2012.12717

	References

