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Highlights
1. ∀𝑘 ∈ ℤ≥0: QMA1 in the cyclotomic field ℚ(𝜁2𝑘), 𝜁𝑚 = 𝑒2𝜋i/𝑚 has a universal gateset 𝒢2𝑘 .

Let 𝒢 ⊆ U(2ℓ, ℚ(𝜁2𝑘)) be a finite gateset. Then QMA𝒢
1 ⊆ QMA𝒢2𝑘

1 .

2. QMA𝒢2
1 = QMA𝒢4

1 , i.e. ℚ-gates can simulate ℚ(i)-gates.

3. ∀𝑘 ∈ ℤ≥0: BQP𝒢
1 ⊆ BQP𝒢2

1 for all finite 𝒢 ⊆ U(2ℓ, ℚ(𝜁2𝑘)).

4. The Decision Clique Homology (CH) problem [KK24] is PSPACE-complete.
Decide whether the clique complex of a given graph has a hole of a given dimension.
[SL23]: Counting number of holes is #P-hard. Note: P#P ⊆ PSPACE.

5. The Gapped Clique Homology (GCH) problem [KK24] is QMA𝒢2
1 -complete.

Additional promise on the combinatorial Laplacian.
[KK24]: GCH is between QMA1 and QMA.

7. ∀𝑘 ∈ ℤ≥0∀ℓ ≥ 4: ℓ-QSATℚ(𝜁2𝑘) is QMA𝒢2𝑘
1 -complete.

For 𝑘 ≥ 3 (i.e. we have the T-gate), ℓ = 3 suffices!

8. The Exact Local Hamiltonian (ELH) problem in ℚ(𝜁2𝑘) is QMA𝒢2𝑘
1 -complete.

Decide whether 𝐻 has eigenvalue 𝜆 = 0, or all eigenvalues |𝜆| ≥ 1/poly(𝑛).
First 2-local QMA1-complete problem! For 𝑘 ≥ 3, 2-ELH is QMA𝒢2𝑘

1 -complete.
[Bra06]: 2-QSAT ∈ P. (ELH: YES-case not necessarily frustration-free)

9. The Exact Sparse Hamiltonian (ESH) problem is also QMA1-complete.

10. The Exact Separable Sparse Hamiltonian (ESSH) problem is QMA1(2)-complete.
Decide: ∃|𝜓1⟩, |𝜓2⟩ ∶ 𝐻|𝜓1⟩|𝜓2⟩ = 0 or ∀|𝜓1⟩, |𝜓2⟩ ∶ ‖𝐻|𝜓1⟩|𝜓2⟩‖ ≥ 1/poly(𝑛).
First complete problem for QMA1(2)! (SSH is QMA(2)-complete [CS12])

QMA1 and The Gateset Issue

Definition (QMA𝒢
1 ). A promise problem 𝐴 = (𝐴yes, 𝐴no) is in QMA𝒢

1
if there exists uniform circuit family {𝑄𝑥} with gates 𝒢 such that:
(Completeness) ∀𝑥 ∈ 𝐴yes ∃|𝜓⟩∶ 𝑝acc(𝑄𝑥, 𝜓) = 1.
(Soundness) ∀𝑥 ∈ 𝐴no ∀|𝜓⟩∶ 𝑝acc(𝑄𝑥, 𝜓) ≤ 1 − 1/poly(|𝑥|).

Analogous definitions for BQP1,QMA1(2).

Does QMA1 have a universal gateset?
I.e. does there exist 𝒢∗ s.t. ∀𝒢 ∶ QMA𝒢

1 ⊆ QMA𝒢∗

1 ?

Solovay-Kitaev approximates any gate with a universal gateset.
→ However, does not preserve perfect completeness!

Not a major issue for the Quantum Satisfiability (QSAT) problem:

Definition (ℓ-QSAT𝕂). Input: Hamiltonian 𝐻 = ∑𝑚
𝑖=1𝐻𝑖 on 𝑛

qubits in field 𝕂 with ℓ-local 𝐻𝑖 ≽ 0.
YES. 𝜆min(𝐻) = 0.
NO. 𝜆min(𝐻) ≥ 1/poly(𝑛).

[GN13]: 3-QSAT is QMA𝒢8
1 -complete for 𝒢8 = {H,T,CX},

with QSAT restriction: 𝐻𝑖 may be projectors in ℤ[ 1
√2
, i] or

𝑈𝐻𝑖𝑈† = (√1/3|000⟩ − √2/3|001⟩)(√1/3⟨000| − √2/3⟨001|).

[KK24]: Gapped Clique Homology is between QMA1 and QMA.
Can only embed rational gates into clique homology.
Use Pythagorean gateset 𝒢Pyth = {CX, 𝑈Pyth}, 𝑈Pyth = 1

5( 3 4
−4 3 ).

Power of 𝒢Pyth unclear. Is QCMA ⊆ QMA𝒢Pyth
1 ? (see [JKNN12])

To show that GCH is QMA1-complete, we need a gateset 𝒢 that is
sufficiently powerful to decide GCH with perfect completeness,
rational, so that it can be embedded into clique homology.

Exact Synthesis
[AGK+24]: An 𝑚-qubit unitary can be synthesized exactly with the
gateset 𝒢2𝑘 (with ancillas) if and only if 𝑈 ∈ U(2𝑚, ℤ[1/2, 𝜁2𝑘]).

𝒢2 = {X,CX,CCX,H ⊗ H}
𝒢4 = {X,CX,CCX, 𝜁8H}
𝒢2𝑘 = {H,CX,T2𝑘}, T2𝑘 = (1 0

0 𝜁2𝑘
)

This work: Implement all unitaries in ℚ(𝜁2𝑘) with 𝒢2𝑘 .
Impossible, even with ancillas. Hence, we need postselection!

Linear Combinations of Unitaries
Step 1: Integer state preparation.

Lemma. Let |𝜓⟩ ∝ ∑𝑑−1
𝑖=0 𝑎𝑖|𝑖⟩, 𝑎𝑖 ∈ ℤ. Can prepare |𝜓⟩ with proba-

bility ≥ 1/4𝑑 with gateset 𝒢2 in time poly(𝑑, log𝐴) for 𝐴 ≔ ∑𝑖|𝑎𝑖|.
Generalizes to 𝑎𝑖 ∈ ℤ[𝜁2𝑘] with gateset 𝒢2𝑘 .

Let 2𝑛 ≥ 𝐴. Prepare |𝜓0⟩ = H⊗𝑛|0⟩ ∝ ∑2𝑛−1
𝑗=0 |𝑗⟩ℬ.

Perform measurement to project onto |𝑗⟩, 𝑗 < 𝐴: |𝜓1⟩ ∝ ∑𝐴−1
𝑗=0 |𝑗⟩ℬ.

Group the |𝑗⟩: |𝜓2⟩ ∝ ∑𝑑−1
𝑖=0 |𝑖⟩𝒜∑𝑎𝑖−1

𝑗=0 |𝑗 + 𝑘𝑖⟩ℬ for 𝑘𝑖 = ∑𝑖−1
𝑗=0|𝑎𝑗|.

Subtract 𝑘𝑖: |𝜓3⟩ ∝ ∑𝑑−1
𝑖=0 |𝑖⟩𝒜∑𝑎𝑖−1

𝑗=0 |𝑗⟩ℬ.

Project ℬ onto |+⟩⊗𝑚: |𝜓3⟩ ∝ ∑𝑑−1
𝑖=0 |𝑎𝑖| ⋅ |𝑖⟩𝒜

Flip sign of |𝑖⟩ if 𝑎𝑖 < 0 to get |𝜓⟩.

Step 2: Gate application. Use LCU [CW12].

Lemma. Let 𝑈 ∈ U(2𝑛, ℚ(i)) with 𝑠𝑈 ∈ ℤ[i] for 𝑠2 ∈ ℕ. 𝑈 can be
implemented with success probabily 2−Ω(𝑛) in time poly(2𝑛, log 𝑠)
using 𝒢4.
Generalizes to 𝑈 ∈ U(2𝑛, ℚ(𝜁2𝑘)) with gateset 𝒢2𝑘 for 𝑘 > 2 with
success probability 1/poly(2𝑛, 𝑠).

Decompose 𝑈 into Pauli basis: 𝑈 = ∑𝑥∈{0,1}2𝑛 𝑎𝑥𝑃𝑥, 𝑎𝑥 ∈ ℚ(i) where
𝑃𝑥 = ⨂𝑛

𝑗=1 𝜎𝑥2𝑗−1𝑥2𝑗 , and 𝜎00 = I, 𝜎01 = X, 𝜎10 = Y, 𝜎11 = Z.

Prepare |𝑈⟩𝒜 = ∑𝑥∈{0,1}2𝑛 𝑎𝑥|𝑥⟩.
On input |𝜙⟩ℬ, apply 𝑃𝑥 conditioned on 𝑥:

|𝑈⟩𝒜|𝜙⟩ℬ = ∑
𝑥∈{0,1}2𝑛

𝑎𝑥|𝑥⟩𝒜|𝜙⟩ℬ ↦ ∑
𝑥∈{0,1}2𝑛

𝑎𝑥|𝑥⟩𝒜 ⊗ 𝑃𝑥|𝜙⟩ℬ ≕ |𝜓′⟩

Measure 𝒜 in X-basis. Outcome |𝑦H⟩ ≔ H⊗2𝑛|𝑦⟩ for 𝑦 ∈ {0, 1}2𝑛.
Succeed if 𝑦 = 02𝑛: (⟨+|2𝑛𝒜 ⊗𝐼ℬ)|𝜓′⟩ ∝ ∑𝑥∈{0,1}2𝑛 𝑎𝑥𝑃𝑥|𝜙⟩ℬ = 𝑈|𝜙⟩ℬ
For 𝑦 ≠ 02𝑛, a different unitary 𝑃�̃�𝑈𝑃�̃� is applied.
Pr[𝑦] = ‖(⟨𝑦H|2𝑛𝒜 ⊗ 𝐼ℬ)|𝜓′⟩‖

2
= 1/4𝑛.

Theorem. QMA𝒢
1 ⊆ QMA𝒢2𝑘

1 for finite 𝒢 in ℚ(𝜁2𝑘).

Use Oblivious amplitude amplification [BCC+14] to boost success
probability of gate application.

Simulating Cyclotomic Gates with Integer Gates
[McK13]: Simulate ℝ with ℂ. Here: simulate ℚ(𝜁2𝑘) ≕ 𝕂 with ℚ.
Encoding: Let 𝑑 = 2𝑘−1 be the degree of 𝜁𝑛, 𝑛 = 2𝑘.
𝑎 = ∑𝑑−1

𝑖=0 𝑎𝑖𝜁𝑖𝑛 ∈ ℚ(𝜁𝑛) ↦ |𝑣(𝑎)⟩ = ∑𝑑−1
𝑖=0 𝑎𝑖|𝑖⟩ with all 𝑎𝑖 ∈ ℚ

|𝜓⟩ = ∑𝑁−2
𝑖=0 𝑎𝑖|𝑖⟩ ∈ ℚ(𝜁𝑛)𝑁 ↦ |𝑣(𝜓)⟩ ∝ ∑𝑑−1

𝑖=0 |𝑖⟩𝛼|𝑣(𝑎𝑖)⟩.

Lemma. ∃ group homomorphism Ψ ∶ U(𝑁,𝕂) → O(𝑑𝑁,ℚ), s.t.
Ψ(𝑈)|𝑣(𝜓)⟩ = |𝑣(𝑈|𝜓⟩)⟩ for all |𝜓⟩ ∈ 𝕂𝑁.

Ψ acts entry-wise: For 𝑎 ∈ 𝕂, let𝑀𝑎 ≔ Ψ(𝑎), s.t. 𝑀𝑎|𝑣(𝑏)⟩ = |𝑣(𝑎𝑏)⟩.

Only for 𝑛 = 2𝑘, we have 𝑀𝑇
𝑎 = 𝑀𝑎 as 𝜁𝑛 = 𝜁−1𝑛 with
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Theorem. QMA𝒢4
1 = QMA𝒢2

1 . BQP𝒢 ⊆ BQP𝒢2 for finite 𝒢 in ℚ(𝜁2𝑘).

For 𝑘 ≥ 3, prover could make 0 from 1, 𝜁𝑛, 𝜁2𝑛 to send “0-proof”.

Sparse Hamiltonians
Lemma. Let 𝐻 ∈ ℤ[𝜁2𝑘]2

𝑛×2𝑛 be an 𝑛-qubit 𝑑-sparse Hamiltonian
with 𝐿-bit entries. Can decompose 𝐻 = ∑𝑚

𝑖=1∑
𝐿−1
𝑙=0 2𝑙−1𝑈𝑖,𝑙 with

𝑚 = 𝑂(2𝑘𝑑2) and 𝑈𝑖,𝑙 efficiently implementable with 𝒢2𝑘 .

Proof idea. [BCC+14]: Can write 𝐻 = ∑𝑑2
𝑖=1𝐻𝑖 with 1-sparse 𝐻𝑖.

[KL21; BCC+14] decompose 1-sparse Hamiltonians into sums of 1-
sparse unitaries. Modify construction for cyclotomic setting.

Theorem. ESHℚ(𝜁2𝑘) ∈ QMA𝒢2𝑘
1 .

Prover sends |𝜙⟩ ∈ Ker(𝐻). Try to apply 𝐻 to |𝜙⟩ℬ.
Prepare |𝐻⟩𝒜 ∝ ∑𝑚

𝑖=1∑
𝐿−1
𝑙=0 2𝑙−1|𝑖, 𝑙⟩. Conditionally apply (𝑈𝑖,𝑙)ℬ.

Measure𝒜 in X-basis and reject if 𝐻|𝜙⟩ was successfully prepared.
Pr[reject] ∝ ‖𝐻|𝜙⟩‖. Never reject 𝐻|𝜙⟩ = 0!

Theorem. ESSHℚ(𝜁2𝑘) is QMA𝒢2𝑘
1 (2)-complete.

Hardness by [CS12], containment above.

Clique Homology
Simplicial complex. Collection of simplices 𝒦 = 𝒦0 ∪𝒦1 ∪⋯ , s.t.
∀𝜎 ∈ 𝒦𝑘 ∶ |𝜎| = 𝑘 + 1 and ∀𝜏 ⊂ 𝜎∶ 𝜏 ∈ 𝒦.
Let 𝒞𝑘(𝒦) = Span{|𝜎⟩ ∣ 𝜎 ∈ 𝒦𝑘}, with canonical ordering 𝜎 =
[𝑣0,… , 𝑣𝑘]. Identify |[𝜋(𝑣0),… , 𝜋(𝑣𝑘)]⟩ = (−1)sgn(𝜋)|[𝑣0,… , 𝑣𝑘]⟩
for all 𝜋 ∈ 𝑆𝑘+1.
Boundary operator 𝜕𝑘|[𝑣0…𝑣𝑘]⟩ = ∑𝑘

𝑖=0(−1)
𝑖|[𝑣0…�̂�𝑖…𝑣𝑘]⟩.

Homology group 𝐻𝑘 = Ker𝜕𝑘/ Im𝜕𝑘+1, i.e. a cycle 𝜕𝑘|𝜓⟩ = 0 is
a hole if it is not a boundary (|𝜓⟩ ∈ Im(𝜕𝑘+1)).
Coboundary operator 𝑑𝑘 = (𝜕𝑘)† via inner product ⟨𝜎|𝜏⟩ = 𝛿𝜎,𝜏.
Laplacian Δ𝑘 = 𝑑𝑘−1𝜕𝑘 + 𝜕𝑘+1𝑑𝑘 with KerΔ𝑘 ≅ 𝐻𝑘.

Example. Boundary operator on 2-simplex [0, 1, 2] (i.e. triangle):
0

1 2

𝜕2 =

1 2

−

0

2

+

0

1

=

0

1 2

𝜕1(|01⟩ + |12⟩ + |20⟩) = (|1⟩ − |0⟩) + (|2⟩ − |1⟩) + (|2⟩ − |0⟩) = 0

⇒ 𝜕𝑘 ∘ 𝜕𝑘+1 = 0.

Definition (Decision Clique Homology (CH)). Input: Graph 𝐺 and
𝑘 ∈ ℕ. Decide if simplicial complex of cliques of 𝐺 has 𝐻𝑘 = 0.

Examples of clique complexes:

Qubit gadget of [KK24]
has two 1-holes.

|0⟩ |1⟩

3

2

1

0

3-simplex [0, 1, 2, 3]
has no holes.

Octahedron is 𝑆2 and
has a 2-hole.

Theorem. CH is PSPACE-complete.

CH ∈ PSPACE by computing the rank of Laplacian Δ𝑘 [Chi85].
[Li22]: QMA𝒢2

1,1−1/exp = PSPACE ⇒ 4-QSATℚ is PSPACE-complete.

Adapt clique homology gadgets of [KK24] to our 4-QSATℚ Hamil-
tonian. → Verify new gadgets computationally.

Definition (Gapped Clique Homology (GCH) [KK24]).
Input. Graph 𝐺 = (𝑉, 𝐸) with weights 𝑤 ∶ 𝑉 → ℚ.
For each clique/simplex 𝜎 = [𝑣0,… , 𝑣𝑘], let 𝑤(𝜎) = ∏𝑘

𝑖=0𝑤(𝑣𝑖).
Redefine inner product ⟨𝜎|𝜏⟩ = 𝑤(𝜎)2𝛿𝜎,𝜏.
YES. 𝜆min(Δ𝑘) = 0.
NO. 𝜆min(Δ𝑘) ≥ 1/poly(𝑛).

Theorem. GCH is QMA𝒢2
1 -complete.

Containment follows by reduction to SSH.

2-local Hamiltonian

Theorem. 2-ELHℚ(𝜁2𝑘) is QMA𝒢2𝑘
1 -complete for all 𝑘 ≥ 3.

Recall 2-QSAT ∈ P. Also cannot use 2-LH of [KKR05] as 𝐻|𝜓hist⟩ ≠ 0.
Idea. Build frustrated Hamiltonian that “behaves like QSAT”.

𝐻clock = 4𝑇 ∑1≤𝑖<𝑗≤𝑇+1|11⟩⟨11|𝑖,𝑗 + ∑𝑇+1
𝑡=1 (|0⟩⟨0| − 𝑇|1⟩⟨1|)𝑡 ≽ 0,

Ker(𝐻clock) = Span {|�̂�⟩ ∣ 𝑡 ∈ {0,… , 𝑇}} , |�̂�⟩ ≔ |0𝑡 1 0𝑇−𝑡⟩
Implement X = |+⟩⟨+| − |−⟩⟨−| by splitting computation on X-basis.
CX gadget:

1̂

1̂ 3̂ 6̂ 9̂

1̂1

2̂

4̂

5̂

7̂

8̂
1̂0

|0⟩𝒜0

|1⟩𝒜0

1 1 1 |0⟩𝒜0

|1⟩𝒜0

|+⟩𝒜1

|−⟩𝒜1

1

−1

|+⟩𝒜1

|−⟩𝒜1

By splitting along eigenbasis, a 1-local gate becomes 0-local!
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Open Problems
QMA1 vs. QMA: Classical oracle separation?
Can we extend the BQP𝒢2𝑘

1 = BQP𝒢2
1 results to QMA1?

Apply our techniques to obtain more QMA1-completeness results.
𝑘 < 3: QMA𝒢2𝑘

1 , completeness of 3-QSAT and 2-ELH remain open.


