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HIGHLIGHTS

1. Vk € Z-y: QMA, in the cyclotomic field Q(Cyx), C,y, = e’™™ has a universal gateset Gy:.
« Let G C U(2%, Q(Tyr)) be a finite gateset. Then QMA% C QMA%k.

2. QMA?

3. Vk € Z.,: BQPY € BQPY” for all finite G € U(2%, Q(T,1)).

4. The Decision Clique Homology (CH) problem |KK24| is PSPACE-complete.

= Decide whether the clique complex of a given graph has a hole of a given dimension.
= |SL23|: Counting number of holes is #P-hard. Note: P** C PSPACE.

5. The Gapped Clique Homology (GCH) problem |[KK24] is QI\/IA%—complete.

= Additional promise on the combinatorial Laplacian.
= |[KK24|: GCH is between QMA; and QMA.

7. Vk e Z, WVl > 4: €—QSATQ(C2") IS QMA%k—complete.
= For k > 3 (i.e. we have the T-gate), £ = 3 suffices!

— QMAg4, L.e. Q-gates can simulate Q(i)-gates.

8. The Exact Local Hamiltonian (ELH) problem in Q(Cy) is QMA%k—complete.

= Decide whether H has eigenvalue A = 0, or all eigenvalues |A| > 1/poly

= First 2-local QMA,-complete problem! For k > 3, 2-ELH is QMA%k—com
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: Hlete.
| Bra06]: 2-QSAT € P. (ELH: YES-case not necessarily frustration-free)
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9. The Exact Sparse Hamiltonian (ESH) problem is also QMA,-complete.

10. The Exact Separable Sparse Hamiltonian (ESSH) problem is QMA, (2)-complete.
= Decide: -

b, 1) HIpp)lhy) = 0 or Yy, [ihy) 2 [H ) [iho) | = 1/poly(n).
(SSH is QMA(2)-complete [CS12))

= First complete problem for QMA,(2)!

\
OMA, AND THE GATESET ISSUE

Examples of cligue complexes:

S

= Measure A in X-basis. Outcome |yy) = H®2”|y> for vy € {0, 1}
= Succeed if y = 0" ((+|?4”®IB)IQD/> e er{0)1}2n aP.|p)s = U|€b>8
= Forpy = 0°", a different unitary P;UP; s applied.

s Pry] = |(wul ¥ @ Ip) 10| = 1/4"

Octahedron is S? and
has a 2-hole.

= CH e PSPACE by computing the rank of Laplacian A* [Chi85]
= [Li22]: QI\/IA1 |_1/exp = PSPACE = 4-QSAT® is PSPACE-complete.

= Adapt clique homology gadgets of |[KK24| to our 4-QSAT® Hamil-
tonian. — Verify new gadgets computationally.

Definition (QMA%). A promise problem A = (A, App) 1S N QMA%
if there exists uniform circuit family {Q,} with gates G such that:

= (Completeness) Vx € Ajes A1)t pacc(Qy, ) = 1.
* (Soundness) Yx € Ay, Y[}t poec(Qu, ) < 1~ 1/poly(|x]).

= Analogous definitions for BQP;, QMA,(2).

Qubit gadget of [KK24

has two 1- holes
3 -simplex [0, 1, 2, 3]

has no holes.

Theorem. CH is PSPACE-complete.

Theorem. QMAY C QMA™™ for finite G in Q(Cy).

= Use Oblivious amplitude amplification |[BCC+14] to boost success

‘ "
Does QMA, have a universal gateset: probability of gate application.

|.e. does there exist G st. VG QMA% C QMA??

/

SIMULATING CycrLotomic GATES WITH INTEGER GATES

= Solovay-Kitaev approximates any gate with a universal gateset.
— However, does not preserve perfect completeness!

McK13]: Simulate IR with C. Here: simulate Q(Cyx)

Encoding: Let d = 251 be the degree of C,, n = 2k,

sa=Yy" a.cf e Q(C,) v(a)y = Y00 a,|i) with all ¢, € Q
)= L5 ali) € QC,)” () o< iy li)alv(a,))
Lemma. 1 group homomorphism WV : U(N,K) — O(dN,Q), st

=: K with Q.

Not a major issue for the Quantum Satisfiability (QSAT) problem:

—>
Definition (/-QSAT™). Input: Hamiltonian H
qubits in field K with ¢-local H, > 0.

. YES Amm(H) — O

—>

" NO. Ay (H) = 1/poly(n). W(U)|v()) = [v(U]p))) for all [P) € K. Definition (Gapped Clique Homology (GCH) [KK24)).

GN13]: 3-QSAT s QMAgg—comp lete for Gy = {H, T, CX}, WV acts entry-wise: Fora € K, let M, := W(a), st. M, |v(b)) = |v(ab)). - Uit Grap.h G B (V, E) with weights w : V' — Q. )
. . _ | ~or each clique/simplex o = [vg, ..., v¢], let w(o) = [],_, w(v)).

= with QSAT restriction: H; may be projectors in Z[\F’ L] o = Only for n = 2%, we have M, = M- as C, = C, with Redefine inner product (o) = w(a)zém.

UHU" = (v/T/3|000) — v2/3|001))(v/1/3(000| — v2/3 <oo1|). 0 -l 0 1 f YES. 1 (AF) = 0

M. o= |1 Mol = pmT = i1 o0 1 oo o |
_______________________________________ Cn ! Cn Cn o1 ot L_1 o o L o = NO. /\m'm(A ) > 1/p0[g(7’l)
KK24]: Gapped Cliqgue Homology is between QMA, and QMA. 1 0 ~1 0 %5 g g 00 0 ! |
= Can only embed rational gates into clique homology. 53 0 3-5 000 Theorem. GCH is QMA?>-complete.
= Use Pyth teset Gpun = {CX, Upuinl, Upuen = +( 34 4). —3Cs + 35 +3 ) s | 0500 5550 | :
se rmythagorean gateset Ypyiy = Pyth Pyth — 5\ —4 3 VH = 13 L 12 Y 00 3 ? (1) %—% —% % Containment follows by reduction to SSH. ,

= Power of Gpyy, unclear. Is QCMA € QMA|™"? (see [JKNN12)) S PO R

2-LOCAL HAMILTONIAN

Theorem. 2-ELH®%H) s QMA%k—complete for all k > 3.

Recall 2-QSAT € P. Also cannot use 2-LH of [KKR05] as H |¢},;) = 0.
ldea. Build frustrated Hamiltonian that “behaves like QSAT"

" To show that GCH is QMA-complete, we need a gateset G that is |
= sufficiently powerful to decide GCH with perfect completeness,

[ Theorem. QI\/IAQ4 = QI\/IA%. BQPQ C BQPg2 for finite G in Q(Cyr). ]

" For k > 3, prover could make 0 from 1,C,, C; to send “O-proof”.

/
SPARSE HAMILTONIANS

= rational, so that it can be embedded into clique homology.

\L 4
EXACT SYNTHESIS

. . = H, = 4T TIY11],+ Y 5H(10X0] = T1)(1]) = 0
AGK424]: An m-qubit unitary can be synthesized exactly with the Lemma. Let H € Z[(;]" ™ be an n-qubit d- Foparse I—Zlalmtltoman ¢ Ik{ ZgK]q;l'l t ACAR (tl X |O 1(|)ng |)t
gateset Gor (with ancillas) if and only if U € U(2™, Z[1/2, (o). with L-bit entries. Can decompose H = ) " Y ;= 2~ U,; with er(Hejock) pan{[f) [t €{0,..., T}}, [T) := | )
, , m = 0O(2 kg2 ) and U effictently implementable vath Gk = Implement X = [+){(+| — |—){—] bg Splitt'mg computation on X-basis.
_ 2 CX gadget:
G, = {X, CX, CCX, H @ Hj Proof idea. |BCC+14]: Can write H = ZLHI- with 1-sparse H;. Syro AT >@ ! »@ /0,
Gy = {X, CX, CCX, CgH} KL21; BCC+14| decompose 1-sparse Hamiltonians into sums of 1- Dt T

D RG)
D@

sparse unitaries. Modify construction for cyclotomic setting. @\

gzk {H, CX, Tzk}, Tzk —

1 0
0 Cy

This work: Implement all unitaries in Q(Cyr) with G

% Impossible, even with ancillas. Hence, we need postselection!

/
LINEAR COMBINATIONS OF UNITARIES

Step 1: Integer state preparation.

Lemma. Let [Y) « Zf;ol a;i), a; € Z. Can prepare |¢) with proba-
bility > 1/4d with gateset G, in time poly(d, log A) for A :=} |a;].
Ceneralizes to a; € Z[(,yx] with gateset Gyr.

I o 115

= Perform measurement to project onto |j),j < A: i) Z

= Group the |7): |U,) ZZ 0 |Z>AZ

= Let 2" > A. Prepare [1;) = H®"|0) o

o 115
|] + k) for k; = Z].:O|a]-|.

= Flip sign of |7) if 4, < 0 to get |).

Step 2: Gate application. Use LCU [CW12]

Lemma. Let U € U(2", Q(1)) with sU € Z[L] for s € N. U can be
implemented with success probabily 27%™ in time poly(2”, logs)

using Gy.

= Prepare |U) 4 = er{o)l}Zn a.|x).
= On input |¢)z, apply P, conditioned on x:

| U)ald)p = Z aclx)4lP)g — Z ax) 4 ® Prldp)s =i |¢")

x€{0,1)2 xel0,1)2n

Theorem. ESH2GH € QMAS"

~’ \\jjxo

= Prover sends |¢) € Ker(H). Try to apply H to |¢})s.

= Prepare |[H) 4 oc Y " 1ZL 2711, 1). Conditionally apply (Ui 1)B-

= Measure A in X-basis and reject if H|¢) was successfully prepared.
= Prreject] oc [|[H|¢p)||. Never reject H|¢p) = 0!

Theorem. ESSHR%H is QMA%k(2)—complete. ]

= Hardness by |[CS12], containment above. ,

CLIQUE HoMoOLOGY

-+ St

Simplicial complex. Collection of simplices K = K° UK U
Vo e KF: lo|=k+1and VT Co: 7€ K.

= Let CK(K) = Span{|o) | 0 € K¥}, with canonical ordering o =

= Homology group H* = Ker 0"/ 1m 9"*!, te. a cycle d"|1) = 0 is
a hole if it is not a boundary (|1) € Im(2*™)).

()" via inner product (o|T) = Oy -
" 1d* with Ker A* = H”

= Coboundary operator d* =
A" 1o" +

= [aplacian AF =

Example. Boundary operator on 2- Smelex 10,1, 2] (Le. trLangle

d'(101) + [12) + [20)) =
= 0 d" =0

|1> 0)) + |2> |1> +(12) - |0> )=0

Definition (Decision Clique Homology (CH)). Input: Graph G and
k € IN. Decide if simplicial complex of cliques of G has H* = 0.

|| Ae

N

G _1 \/wh

% By splitting along eigenbasis, a 1-local gate becomes 0-locall

/
OPEN PROBLEMS

= QMA, vs. QMA: Classical oracle separation?

= Can we extend the BQP%k = BQP(f2 results to QMA,?
= Apply our techniques to obtain more QMA-completeness results.

" k < 3: QMA%k, completeness of 3-QSAT and 2-ELH remain open. P
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