

Towards a universal gateset for QMA₁ Dorian Rudolph

Department of Computer Science and Institute for Photonic Quantum Systems (PhoQS), Paderborn University

HIGHLIGHTS

- **1.** $\forall k \in \mathbb{Z}_{\geq 0}$: QMA₁ in the cyclotomic field $\mathbb{Q}(\zeta_{2^k})$, $\zeta_m = e^{2\pi i/m}$ has a universal gateset \mathcal{G}_{2^k} . • Let $\mathcal{G} \subseteq U(2^{\ell}, \mathbb{Q}(\zeta_{2^k}))$ be a finite gateset. Then $\mathsf{QMA}_1^{\mathcal{G}} \subseteq \mathsf{QMA}_1^{\mathcal{G}_{2^k}}$.
- **2.** $QMA_1^{\mathcal{G}_2} = QMA_1^{\mathcal{G}_4}$, i.e. Q-gates can simulate Q(i)-gates.
- **3.** $\forall k \in \mathbb{Z}_{>0}$: $BQP_1^{\mathcal{G}} \subseteq BQP_1^{\mathcal{G}_2}$ for all finite $\mathcal{G} \subseteq U(2^{\ell}, \mathbb{Q}(\zeta_{2^k}))$.
- **4.** The *Decision Clique Homology* (CH) problem [KK24] is PSPACE-complete.
 - Decide whether the *clique complex* of a given graph has a hole of a given dimension. • [SL23]: Counting number of holes is #P-hard. Note: $P^{\#P} \subseteq PSPACE$.
- **5.** The Gapped Clique Homology (GCH) problem [KK24] is $QMA_1^{\mathcal{G}_2}$ -complete.
 - Additional promise on the *combinatorial Laplacian*.
 - [KK24]: GCH is between QMA₁ and QMA.

QMA₁ and The Gateset Issue

Definition (QMA^G₁). A promise problem $A = (A_{\text{ues}}, A_{\text{no}})$ is in QMA^G₁ if there exists uniform circuit family $\{Q_x\}$ with gates \mathcal{G} such that:

• Measure \mathcal{A} in X-basis. Outcome $|y_{\mathsf{H}}\rangle := \mathsf{H}^{\otimes 2n} |y\rangle$ for $y \in \{0, 1\}^{2n}$. • Succeed if $y = 0^{2n}$: $(\langle +|_{\mathcal{A}}^{2n} \otimes I_{\mathcal{B}}) | \psi' \rangle \propto \sum_{x \in \{0,1\}^{2n}} a_x P_x | \phi \rangle_{\mathcal{B}} = U | \phi \rangle_{\mathcal{B}}$ • For $y \neq 0^{2n}$, a different unitary $P_{\tilde{v}}UP_{\tilde{v}}$ is applied.

- **8.** The *Exact Local Hamiltonian* (ELH) problem in $\mathbb{Q}(\zeta_{2^k})$ is $\mathbb{QMA}_1^{\mathcal{G}_{2^k}}$ -complete.
 - Decide whether H has eigenvalue $\lambda = 0$, or all eigenvalues $|\lambda| \ge 1/\text{poly}(n)$.
 - First 2-local QMA₁-complete problem! For $k \ge 3$, 2-ELH is QMA₁^{G_{2k}-complete.} [Bra06]: 2-QSAT ∈ P. (ELH: YES-case not necessarily *frustration-free*)
- **9.** The *Exact Sparse Hamiltonian* (ESH) problem is also QMA₁-complete.
- **10.** The *Exact Separable Sparse Hamiltonian* (ESSH) problem is QMA₁(2)-complete. • Decide: $\exists |\psi_1\rangle, |\psi_2\rangle \colon H|\psi_1\rangle |\psi_2\rangle = 0$ or $\forall |\psi_1\rangle, |\psi_2\rangle \colon ||H|\psi_1\rangle |\psi_2\rangle || \ge 1/\text{poly}(n)$. • First complete problem for $QMA_1(2)!$ (SSH is QMA(2)-complete [CS12])

Examples of *clique complexes*: Qubit gadget of [KK24]

• (Completeness) $\forall x \in A_{\text{ues}} \exists |\psi\rangle : p_{\text{acc}}(Q_x, \psi) = 1.$ • (Soundness) $\forall x \in A_{no} \forall |\psi\rangle$: $p_{acc}(Q_x, \psi) \le 1 - 1/\text{poly}(|x|)$.

• Analogous definitions for BQP₁, QMA₁(2).

Does **QMA**₁ have a *universal gateset*? I.e. does there exist \mathcal{G}^* s.t. $\forall \mathcal{G}: \mathsf{QMA}_1^{\mathcal{G}} \subseteq \mathsf{QMA}_1^{\mathcal{G}^*}$?

• Solovay-Kitaev *approximates* any gate with a *universal gateset*. → However, does not preserve perfect completeness!

Not a major issue for the *Quantum Satisfiability* (QSAT) problem:

Definition $(\ell - \mathsf{QSAT}^{\mathbb{K}})$. Input: Hamiltonian $H = \sum_{i=1}^{m} H_i$ on nqubits in field **K** with ℓ -local $H_i \ge 0$. • YES. $\lambda_{\min}(H) = 0.$

• NO. $\lambda_{\min}(H) \ge 1/\operatorname{poly}(n)$.

[GN13]: 3-QSAT is QMA^{\mathcal{G}_8}-complete for $\mathcal{G}_8 = \{H, T, CX\}$, • with QSAT restriction: H_i may be projectors in $\mathbb{Z}[\frac{1}{\sqrt{2}}, i]$ or $UH_i U^{\dagger} = (\sqrt{1/3}|000\rangle - \sqrt{2/3}|001\rangle)(\sqrt{1/3}\langle 000| - \sqrt{2/3}\langle 001|).$

[KK24]: *Gapped Clique Homology* is between **QMA**₁ and **QMA**. • Can only embed *rational gates* into clique homology. • Use Pythagorean gateset $\mathcal{G}_{Pyth} = \{CX, U_{Pyth}\}, U_{Pyth} = \frac{1}{5}(\begin{array}{c} 3 & 4\\ -4 & 3 \end{array}).$ • Power of \mathcal{G}_{Pyth} unclear. Is QCMA \subseteq QMA^{\mathcal{G}_{Pyth}}? (see [JKNN12])

To show that GCH is QMA_1 -complete, we need a gateset G that is sufficiently powerful to decide GCH with perfect completeness, • rational, so that it can be embedded into clique homology.

• $\Pr[y] = \left\| \left(\langle y_{\mathsf{H}} |_{\mathcal{A}}^{2n} \otimes I_{\mathcal{B}} \right) | \psi' \rangle \right\|^2 = 1/4^n.$

Theorem. $\mathsf{QMA}_1^{\mathcal{G}} \subseteq \mathsf{QMA}_1^{\mathcal{G}_{2^k}}$ for finite \mathcal{G} in $\mathbb{Q}(\zeta_{2^k})$.

• Use *Oblivious amplitude amplification* [BCC+14] to boost success probability of gate application.

SIMULATING CYCLOTOMIC GATES WITH INTEGER GATES [McK13]: Simulate \mathbb{R} with \mathbb{C} . Here: simulate $\mathbb{Q}(\zeta_{2^k}) =: \mathbb{K}$ with \mathbb{Q} . **Encoding**: Let $d = 2^{k-1}$ be the degree of ζ_n , $n = 2^k$. • $a = \sum_{i=0}^{d-1} a_i \zeta_n^i \in \mathbb{Q}(\zeta_n) \quad \mapsto \quad |v(a)\rangle = \sum_{i=0}^{d-1} a_i |i\rangle$ with all $a_i \in \mathbb{Q}$ • $|\psi\rangle = \sum_{i=0}^{N-2} a_i |i\rangle \in \mathbb{Q}(\zeta_n)^N \quad \mapsto \quad |v(\psi)\rangle \propto \sum_{i=0}^{d-1} |i\rangle_{\alpha} |v(a_i)\rangle.$

Lemma. \exists group homomorphism Ψ : $U(N, \mathbb{K}) \rightarrow O(dN, \mathbb{Q})$, s.t. $\Psi(U)|v(\psi)\rangle = |v(U|\psi\rangle)\rangle$ for all $|\psi\rangle \in \mathbb{K}^{N}$.

 Ψ acts entry-wise: For $a \in \mathbb{K}$, let $M_a := \Psi(a)$, s.t. $M_a |v(b)\rangle = |v(ab)\rangle$.

 $0 \ 0 \ 0$

• Only for
$$n = 2^k$$
, we have $M_a^T = M_{\overline{a}}$ as $\overline{\zeta_n} = \zeta_n^{-1}$ with

Theorem. $QMA_1^{\mathcal{G}_4} = QMA_1^{\mathcal{G}_2}$. $BQP^{\mathcal{G}} \subseteq BQP^{\mathcal{G}_2}$ for finite \mathcal{G} in $\mathbb{Q}(\zeta_{2^k})$.

EXACT SYNTHESIS

[AGK+24]: An *m*-qubit unitary can be synthesized *exactly* with the gateset \mathcal{G}_{2^k} (with ancillas) if and only if $U \in U(2^m, \mathbb{Z}[1/2, \zeta_{2^k}])$.

> $\mathcal{G}_2 = \{\mathsf{X}, \mathsf{C}\mathsf{X}, \mathsf{C}\mathsf{C}\mathsf{X}, \mathsf{H} \otimes \mathsf{H}\}$ $\mathcal{G}_{4} = \{\mathsf{X}, \mathsf{C}\mathsf{X}, \mathsf{C}\mathsf{C}\mathsf{X}, \zeta_{8}\mathsf{H}\}$ $\mathcal{G}_{2^{k}} = \{\mathsf{H}, \mathsf{C}\mathsf{X}, \mathsf{T}_{2^{k}}\}, \quad \mathsf{T}_{2^{k}} = \begin{pmatrix} 1 & 0\\ 0 & \zeta_{2^{k}} \end{pmatrix}$

This work: Implement all unitaries in $\mathbb{Q}(\zeta_{2^k})$ with \mathcal{G}_{2^k} . • Impossible, even with ancillas. Hence, we need *postselection*!

LINEAR COMBINATIONS OF UNITARIES

Step 1: Integer state preparation.

Lemma. Let $|\psi\rangle \propto \sum_{i=0}^{d-1} a_i |i\rangle$, $a_i \in \mathbb{Z}$. Can prepare $|\psi\rangle$ with probability $\geq 1/4d$ with gateset \mathcal{G}_2 in time poly $(d, \log A)$ for $A := \sum_i |a_i|$. Generalizes to $a_i \in \mathbb{Z}[\zeta_{2^k}]$ with gateset \mathcal{G}_{2^k} .

- Let $2^n \ge A$. Prepare $|\psi_0\rangle = \mathsf{H}^{\otimes n}|0\rangle \propto \sum_{j=0}^{2^n-1}|j\rangle_{\mathcal{B}}$. • Perform measurement to project onto $|j\rangle$, j < A: $|\psi_1\rangle \propto \sum_{j=0}^{A-1} |j\rangle_{\mathcal{B}}$.
- Group the $|j\rangle$: $|\psi_2\rangle \propto \sum_{i=0}^{d-1} |i\rangle_{\mathcal{A}} \sum_{j=0}^{a_i-1} |j+k_i\rangle_{\mathcal{B}}$ for $k_i = \sum_{j=0}^{i-1} |a_j|$.

• For $k \ge 3$, prover could make 0 from 1, ζ_n , ζ_n^2 to send "0-proof".

SPARSE HAMILTONIANS

(0)

-1)

Lemma. Let $H \in \mathbb{Z}[\zeta_{2^k}]^{2^n \times 2^n}$ be an *n*-qubit *d*-sparse Hamiltonian with *L*-bit entries. Can decompose $H = \sum_{i=1}^m \sum_{l=0}^{L-1} 2^{l-1} U_{i,l}$ with $m = O(2^k d^2)$ and $U_{i,l}$ efficiently implementable with \mathcal{G}_{2^k} .

Proof idea. [BCC+14]: Can write $H = \sum_{i=1}^{d^2} H_i$ with 1-sparse H_i . [KL21; BCC+14] decompose 1-sparse Hamiltonians into sums of 1sparse unitaries. Modify construction for cyclotomic setting.

Theorem. $\text{ESH}^{\mathbb{Q}(\zeta_{2^k})} \in \text{QMA}_1^{\mathcal{G}_{2^k}}$.

• Prover sends $|\phi\rangle \in \text{Ker}(H)$. Try to apply H to $|\phi\rangle_{\mathcal{B}}$. • Prepare $|H\rangle_{\mathcal{A}} \propto \sum_{i=1}^{m} \sum_{l=0}^{L-1} 2^{l-1} |i,l\rangle$. Conditionally apply $(U_{i,l})_{\mathcal{B}}$. • Measure \mathcal{A} in X-basis and *reject* if $H|\phi\rangle$ was successfully prepared.

• $\Pr[\operatorname{reject}] \propto ||H|\phi\rangle||$. Never reject $H|\phi\rangle = 0!$

Theorem. ESSH^{$Q(\zeta_{2^k})$} is QMA^{\mathcal{G}_{2^k}}(2)-complete.

Hardness by [CS12], containment above.

CLIQUE HOMOLOGY

Simplicial complex. Collection of simplices $\mathcal{K} = \mathcal{K}^0 \cup \mathcal{K}^1 \cup \cdots$, s.t. $\forall \sigma \in \mathcal{K}^k \colon |\sigma| = k + 1 \text{ and } \forall \tau \subset \sigma \colon \tau \in \mathcal{K}.$

• Let $\mathcal{C}^k(\mathcal{K}) = \text{Span}\{|\sigma\rangle \mid \sigma \in \mathcal{K}^k\}$, with canonical ordering $\sigma =$

Theorem. 2-ELH^{$\mathbb{Q}(\zeta_{2^k})$} is QMA^{\mathcal{G}_{2^k}}-complete for all $k \geq 3$.

Recall 2-QSAT \in P. Also cannot use 2-LH of [KKR05] as $H|\psi_{hist}\rangle \neq 0$. Idea. Build frustrated Hamiltonian that "behaves like QSAT".

- $H_{\text{clock}} = 4T \sum_{1 \le i < j \le T+1} |11\rangle \langle 11|_{i,j} + \sum_{t=1}^{T+1} (|0\rangle \langle 0| T|1\rangle \langle 1|)_t \ge 0$, $\operatorname{Ker}(H_{\operatorname{clock}}) = \operatorname{Span}\left\{ |\widehat{t}\rangle \mid t \in \{0, \dots, T\} \right\}, \ |\widehat{t}\rangle := |0^{t} \ 1 \ 0^{T-t} \rangle$
- Implement $X = |+\rangle\langle +|-|-\rangle\langle -|$ by splitting computation on X-basis. CX gadget:

• By splitting along eigenbasis, a 1-local gate becomes 0-local!

OPEN PROBLEMS

- QMA₁ vs. QMA: Classical oracle separation?
- Can we extend the $BQP_1^{\mathcal{G}_{2^k}} = BQP_1^{\mathcal{G}_2}$ results to QMA_1 ?
- Apply our techniques to obtain more **QMA**₁-completeness results.
- k < 3: QMA₁^{Θ_{2^k}}, completeness of 3-QSAT and 2-ELH remain open.

REFERENCES

- [AGK+24] M. Amy, A. N. Glaudell, S. Kelso, W. Maxwell, S. S. Mendelson, and N. J. Ross. "Exact Synthesis of Multiqubit Clifford-Cyclotomic Circuits." In: Reversible Computation. 2024.
- [BCC+14] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma. "Exponential Improvement in Precision for Simulating Sparse Hamiltonians." In: STOC. 2014. [Bra06] S. Bravyi. Efficient algorithm for a quantum analogue of 2-SAT. 2006. arXiv: quant-ph/0602108 [quant-ph]. [Chi85] A. L. Chistov. "Fast parallel calculation of the rank of matrices over a field of arbitrary characteristic." In: Fundamentals of Computation Theory. 1985. [CS12] A. Chailloux and O. Sattath. "The Complexity of the Separable Hamiltonian Problem." In: CCC. 2012. [CW12] A. M. Childs and N. Wiebe. "Hamiltonian Simulation Using Linear Combinations of Unitary Operations." In: Quantum Info. Comput. 12.11–12 (2012). [GN13] D. Gosset and D. Nagaj. "Quantum 3-SAT Is QMA1-Complete." In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science. 2013. [JKNN12] S. P. Jordan, H. Kobayashi, D. Nagaj, and H. Nishimura. "Achieving perfect completeness in classical-witness quantum merlin-arthur proof systems." In: Quantum Info. Comput. 12.5–6 (2012). [KK24] R. King and T. Kohler. "Gapped Clique Homology on Weighted Graphs is QMA1-Hard and Contained in QMA." In: FOCS. 2024. [KKR05] J. Kempe, A. Kitaev, and O. Regev. The Complexity of the Local Hamiltonian Problem. 2005. arXiv: quant-ph/0406180 [quant-ph]. [KL21] W. M. Kirby and P. J. Love. "Variational Quantum Eigensolvers for Sparse Hamiltonians." In: Phys. Rev. Lett. 127.11 (2021). [Li22] Y. Li. A Simple Proof of PreciseQMA = PSPACE. 2022. arXiv: 2206.09230. [McK13] M. McKague. "On the power quantum computation over real hilbert spaces." In: Int. J. Quantum Inf. 11.01 (2013). [SL23] A. Schmidhuber and S. Lloyd. "Complexity-Theoretic Limitations on Quantum Algorithms for Topological Data Analysis." In: *PRX Quantum* 4 (4 2023).

• Subtract k_i : $|\psi_3\rangle \propto \sum_{i=0}^{d-1} |i\rangle_{\mathcal{A}} \sum_{j=0}^{a_i-1} |j\rangle_{\mathcal{B}}$. • Project \mathcal{B} onto $|+\rangle^{\otimes m}$: $|\psi_3\rangle \propto \sum_{i=0}^{d-1} |a_i| \cdot |i\rangle_{\mathcal{A}}$ • Flip sign of $|i\rangle$ if $a_i < 0$ to get $|\psi\rangle$.

Step 2: Gate application. Use LCU [CW12].

Lemma. Let $U \in U(2^n, \mathbb{Q}(\mathfrak{i}))$ with $sU \in \mathbb{Z}[\mathfrak{i}]$ for $s^2 \in \mathbb{N}$. U can be implemented with success probabily $2^{-\Omega(n)}$ in time poly $(2^n, \log s)$ using \mathcal{G}_4 .

Generalizes to $U \in U(2^n, \mathbb{Q}(\zeta_{2^k}))$ with gateset \mathcal{G}_{2^k} for k > 2 with success probability $1/\text{poly}(2^n, s)$.

Decompose U into Pauli basis: $U = \sum_{x \in \{0,1\}^{2n}} a_x P_x$, $a_x \in \mathbb{Q}(\mathfrak{i})$ where • $P_x = \bigotimes_{j=1}^n \sigma_{x_{2j-1}x_{2j}}$, and $\sigma_{00} = I$, $\sigma_{01} = X$, $\sigma_{10} = Y$, $\sigma_{11} = Z$. • Prepare $|U\rangle_{\mathcal{A}} = \sum_{x \in \{0,1\}^{2n}} a_x |x\rangle$. • On input $|\phi\rangle_{\mathcal{B}}$, apply P_x conditioned on x:

$$|U\rangle_{\mathcal{A}}|\phi\rangle_{\mathcal{B}} = \sum_{x\in\{0,1\}^{2n}} a_x |x\rangle_{\mathcal{A}} |\phi\rangle_{\mathcal{B}} \quad \mapsto \sum_{x\in\{0,1\}^{2n}} a_x |x\rangle_{\mathcal{A}} \otimes P_x |\phi\rangle_{\mathcal{B}} =: |\psi'\rangle_{\mathcal{A}}$$

 $[v_0, \ldots, v_k]$. Identify $|[\pi(v_0), \ldots, \pi(v_k)]\rangle = (-1)^{\text{sgn}(\pi)} |[v_0, \ldots, v_k]\rangle$ for all $\pi \in S_{k+1}$.

• Boundary operator $\partial^k | [v_0 \dots v_k] \rangle = \sum_{i=0}^k (-1)^i | [v_0 \dots \hat{v_i} \dots v_k] \rangle.$ • Homology group $H^k = \operatorname{Ker} \partial^k / \operatorname{Im} \partial^{k+1}$, i.e. a cycle $\partial^k |\psi\rangle = 0$ is a *hole* if it is not a *boundary* $(|\psi\rangle \in \text{Im}(\partial^{k+1}))$. • Coboundary operator $d^k = (\partial^k)^\dagger$ via inner product $\langle \sigma | \tau \rangle = \delta_{\sigma,\tau}$.

• Laplacian $\Delta^k = d^{k-1}\partial^k + \partial^{k+1}d^k$ with Ker $\Delta^k \cong H^k$.

Example. Boundary operator on 2-simplex [0, 1, 2] (i.e. triangle): ∂^2 $\partial^{1}(|01\rangle + |12\rangle + |20\rangle) = (|1\rangle - |0\rangle) + (|2\rangle - |1\rangle) + (|2\rangle - |0\rangle) = 0$ $\Rightarrow \partial^k \circ \partial^{k+1} = 0.$

Definition (Decision Clique Homology (CH)). Input: Graph G and $k \in \mathbb{N}$. Decide if simplicial complex of cliques of G has $H^{k} = 0$.