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INTRODUCTION
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Definition (Quantum k-SAT). Given Hamiltonian H = ) . H; € |
C*>? on n qubits with k-local projectors H,, decide whether the

H, have a common nullspace.

Note: QSAT is like the local Hamiltonian problem, but with the ad-
ditional promise that H is frustration-free in the YES-case.

k-LH ~ MAX-k-SAT a k-QSAT ~ k-SAT
Complexity of k-LLH is well understood (QMA-complete for k = 2). For
k-OSAT we know:
= 2-QSAT is in P [Bra06|
= 3-QSAT is QMA,-complete |[GN13] (QMA, is QMA with perfect
completeness).

— Complexity transition like in the classical setting. But in quantum,
the study of systems of higher local dimension are also physically
motivated; 2-QSAT becomes much harder:

Definition ((k, [)-QSAT). 2-QSAT, where each projector acts on a
qu-k-it and a qu-I-it (Le. C* @ C)).

= (3,5)-QSAT is QMA,-complete [ERO08].
= (2,3)-QSAT is NP-hard, classical (2,3)-SAT is NP-complete
'Nag08].

Quantum SAT on a line of qu-d-its is also of great interest:

= Classical 1D-SAT is in P for any local dimension.
= There exists a frustration free qutrit construction with unique, en-
tangled ground state [BCMNS12|.

= [irst step to show that entangled witness can be encoded
= QMA,-complete for d = 11 [AGIK09; Nag08]

What is the smallest local dimension

that can encode a QMA, -hard problem?
N\ /
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RESULTS

We improve the state of the art regarding (k, [)-QSAT:

Theorem. (2,5)-QSAT and (3,4)-QSAT is QMA,-complete with |
soundness Q(1/T?).

= T denotes the number of gates in the original QMA,-verifier em-
bedded in the QSAT-instance.

= Soundness s requires that A.,(H) > s in the NO-case.

= First demonstration that (2, k)-QSAT is QMA,-hard.

Hardness of (k, [)-QSAT (new results bold red):

2 |3 4 5 6

2[€ P[NP-H[NP-H |QMA,-C|QMA,-C
3 NP-H|QMA,-C|QMA,-C | OMA,-C
4 OMA,-C|OMA,-C [QMA, -C
5 OMA,-C [QMA,-C

Proof outline.

(1) Circuit-to-Hamiltonian embedding based on [GN13|: Requires a
clock Hamiltonian whose nullspace is spanned by clock states, as
well as (1-local) transition and selection projectors for clock states.
= Implement CNOT gates in 2D to reduce dimensions from (3, 5)

'ERO8| to (3, 4).

(2) Prove soundness via novel Nullspace Connection Lemma.

(3) Construct (2, 5) clock Hamiltonian by combining qu-5-its and qubits
into logical qu-4-its and qutrits.

We further improve soundness of the 2D-Hamiltonian |[GN13] from
Q(1/T°) to Q(1/T?) via a slight modification and analysis using Uni-
tary Labelled Graphs |[BCO17] and our Nullspace Connection Lemma.

Theorem. 3-QSAT is QMA, -complete with soundness Q(1/T?). ]

First OMA, -hardness result for lines of alternating particles (3, d):
A— d A d A o d —A

Theorem. 1D-(3,d)-QSAT is QMA,-complete for d = 76176. ]

= Black-box simulation of any 1D-(d, d)-QSAT 1D-(3,d")-QSAT with
d' e O(d?), preserving soundness in the NO-case (similar to Hamil-
tonian simulation |BH17; CMP18|)

= Theorem follows from the QMA,-hardness of 1D-(11, 11)-QSAT
'Nag08].

Towards qubits on the line: Even 1D-(2,4)-QSAT can have an en-
tangled ground state.

Theorem. There exists a frustration-free 1D-(2,4)-Hamiltonian
with unique ground state entangled across all cuts.
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Gadgets of the 2D-Hamiltonian on the grid of clock states (modified

from [GN13)):
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CNOT gadget (up to 1-local rotation):

(e) CNOT on |0), (f) CNOT on |1),

= [ransitions in X- and Y-direction : ] ::I - Ty
Lmplement non-commuting U,, U, .- 3
= Cond. transitions route |0) through ¢~ N )
U,U, (e), and [1) through U, U, (f).  ¢1 & N o)
* Implements gate Goeen I I::I )
V =10)0l®U,U, +|[1X1|eU,U, (____!—! T — i
from top left to bottom right. +— —o
= “Center” of (e), (f) is penalized since  ¢"|_| I I :I l
U.U, =U,U,. N
X 0N )
2 4 ‘ ‘ L..#..{. Embed circuit U,VU,
A 4 % 4 y ¢ % by chaining gadgets to-
gether (Note: separate

gadget for 1-local gate):
» /ig-zag edges rep-

RN

— resent IlI-transitions
+—¢ ¥—4--4  connecting the gad-
} B Q) s Vs gets.

» Fach gadget embeds

I I :] é a single gate from TL
¥ ) ) 1 to BR.
VA ) L ] " Soundness  follows
l‘__ l "f : ’ l( f;l ' +——% from the next lemma:
s Gts & ) et Vs i s s 7 ) W W W

Nullspace Connection Lemma (informal). Given circuit Hamilto-

nian on a graph of clock states:

= H, (gate gadgets): m circuit Hamiltonians on clock states K,
(K; NK,..; = @) implementing U, from input node u; to output v;.

» H, (zig-zag edges): I-transitions from v; to u,, .

Then H = H; + H, embeds circuit U,, --- U; from u; to v,, with

y(H) = Q(y(H,)/m)

Note: This lemma also applies to Kitaev's original circuit Hamiltonian
and gives soundness without the random walk approach.

U, I U, I U, I
® >N \N\ND >N \N\ND y o SAAAYE |

Us

>0

= The nullspace of red edges on their time steps is spanned by

[pyelt-1)+Uilyp)®|t)
= Connect nullspaces to history state ZZ:O U --- Ui l)|t).
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2D HAMILTONIAN

Clock Hamiltonian H,q With N (H,) = Span{|C,), ..., |C,)}

= Transition projectors h; ;1 (U) on Homp ® Hoek With

(H X Hclock) hi,i+1(U) (I X Hclock) ~ (H %Y |Cz><Cz| + 1 X |Ci+1><cz‘+1 |)
— (U ®ICHCii1] + U ®|Ciiy XCi)-
= Selection projectors C;, Cs; on Hoq With
HclockCZiHclock ™~ Z?]:Z|C]><C]|

Theorem (informal, based on |[GN13]). Any QMA,-verifier can
be reduced to a QSAT instance H on Hcomp ® Hjoek,1 ® Helock 2
(Z,X,Y). H only has terms of the form (H o) x + (Hcok)y, C<x ®
Copr i i1(U)z %, 10)0]z ® hy ;11 (D) x. Under certain commutation
assumptions, soundness is Q(y(Hyoi)/IN?), for spectral gap y(-).

" Use H, to set [1p) = |0) on t = 0.

(2,5)-CLock )

All that remains to show QMA,-hardness of (2,5)-QSAT, is a (2,5)-
clock with 1-local transition projectors h;;,; and selection projectors
Cerr Gy

ldea: Use logical qudits with indicator qubits so that the qudit can
be “selected” with a qubit projector. Example:

= Implement logical qutrit with qu-6-it and three qubits.
= |T) oc [1)]000) + |4)[100), |2) oc |2)]000) + |5)|010),
3) o |3)]000) + [6)|001) (enforce with (2, 6)-projectors)

Implement a logical (3, 4)-clock.

= Qutrits can represent three states unborn, alive, dead, which seems
necessary for a clock with 2-local transitions (see |[ERO8]).

= Qu-4-its can have two alive states, allowing for 1-local transitions.

= We need to limit use of indicator qubits compared to example since
each increases the qu-d-it dimension.

Logical qutrit on qu-5-it
(u,a,d,x,d’) and two qubits:

Logical qu-4-it on qu-5-it
(1,ay,a,,d,u’) and one qubit:

uy o< |u,1,0) + |x,0,0) U o |u, 0) + |u/, 1)
a)o |a,0,0)+|x,1,0) |A;) o |ag, 0)
d)oc|d,0,0)+1|d’,0,1) |A,) « |a,, 0)

D) o< |d, 0)

Key features: 1-local qubit projector suffices to
= identify |U), |d), “|u) or |a) = transition from |u) to |a).
Clock states: |Cy),...,|Cy) with

.

o)y dD dA, )
( CA2 UU >
+ dD aU )
Ci) + dD dU )
|+ dD dA; )

f dA, uU
Cii1) i L ’ )

We implement |C;) <> |C,, ) transitions as |a;) < |a,).
Remark: We get a (3, 4)-clock “for free”.

We can enforce the clock space with a (2,5)-QSAT Hamiltonian.
Projectors (each 522 52 block above is labeled afy o€):

g (U7) = 51 ® 10, Xyl + 1 ® a: Xl
~U; ® lay Xazls, — Uz ® |a; a |51.>
Cal = lu)(ul, csl =11l
cl = dxdl, cll =111,
\/\/ote: We need qu-5-it and qubit variants of C;, Cs, for blpartlteness./

1D-(3,d)-QSAT )

Lemma (black-box simulation). Let H = Z?j H; ;.1 be a Hamil-
tontan on a line of n qu-d-its with H;,.; > 0. There exists a
poly-time computable H” on an alternating chain of n +1 qu-d’-its
(d’ = O(d*)) and n qutrits, such that A (H) = 0 iff A . .(H) =0
and y(H') = Q(y(H)/IH).

Idea: Logically split qu-d’-its into two qu-d’-its (d” = Vd’).

= Fach d” x 3 xd” system logically represents a qu-d-it.
* ‘Move" the logical qu-d-it between the qu-d’-its so that H, ;,; can
be simulated 1-locally on qu-d’-it a;.

logical qu-d-it logical qu-d-it
N

A

% H H o H H a
! ball/2 ball/2 I ball/2 ball/2 I
Yo | 9% b Vi O b Vs ) O3 =+
L®2 (H1’2 )L'l'®2 L®2 (H2’3 )L'l'®2

Logical qu-d-it (enforced with Hy,2):

= Think of the d” x 3 x d” systems as bins able to hold red or black
balls. Outer bins have capacity 2d and inner only 1.

= Write standard basis states as |cy, ¢,) (c; red and ¢, black balls).

= [ransitions enforce superposition of all configurations with the same
total number of red and black balls. E.qg,, |[2,1)]0,0) < |1, 1)|1,0).

= For i € [d], logical [7) is superposition over all configurations with
;1 :=2(i—1)redand (¢;, :=2(d -1+ 1))+ 1 black balls.
= A full outer bin with even number of red balls determines |7).

= |n total 2d + 1 balls, so that if an outer bin is empty, the middle bin
must be occupied. — Penalize the "all empty” configuration.

ool o lo

oo (| lo

0,2)s 10,005 12,1),

Some configurations of |2 ) for d = 2:

‘QQQJ \g o

2,2); 10,135 10,0), 2,2); 10,005 10,1),

oo | loc ol iof o

1,2)s 10,0y |L,1), 0,2), 11,0) |1,1),

We can now lift the original Hamiltonian terms H; ;. into the logical
space via the isometry L = Zf:1|cf)1,cf)2><i|.

* Let H' = H{pgicol + Hiipo Where Hlyy = Y (L® L)(H, 1 )(L® L)y,
= Similar to Hamiltonian simulation, we obtain:

Lemma. T'"H'T = $H for isometry T.
\ /

ENTANGLED 1D-(2,4)-QSAT )

We again use balls and bins, but now just a single color. Large bins
have capacity 3 and small bins capacity 1. Configurations evolve with
the following rules (also in reverse):

= [irst large bin always has at least one ball, and last at most 2.

= |f large bin is nonempty, small bin to the right empty, add one ball
to both: |c,0) < |c+1,1).

= |f small bin is nonempty and large bin to the right empty, move ball:
|1,0) < |0, 1).

Uniform superposition of config-
urations (I's|Is | s):

Obtain “clock state” by factoring

[+) = V1/2(]20) + |31)):

10]00]00) 10]00]00)
+21]00]00) +121]100]00)
+1201101]00) +] = | 10]00)
+131]10]00) +| + [21]00)
+12 0 2 1 OO> + % % 10>
+1]1 3 1 2 1 OO> + * * 21>
_|_...

/
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OPEN PROBLEMS

= Complete the complexity classification of (k,[)-QSAT. The cases
(2,4),(2,3),(3,3) remain open.
= Hardness of 1D-QSAT on qu-d-its with d < 117
—Due to our black-box approach, we get a huge second dimension.
= |s 1D-(2,d)-QSAT still QMA,-hard?
" 1D-(2,3)-QSAT instances with fully entangled ground space?
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