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Introduction
Definition (Quantum 𝑘-SAT). Given Hamiltonian 𝐻 = ∑𝑖𝐻𝑖 ∈
ℂ2𝑛×2𝑛 on 𝑛 qubits with 𝑘-local projectors 𝐻𝑖, decide whether the
𝐻𝑖 have a common nullspace.

Note: QSAT is like the local Hamiltonian problem, but with the ad-
ditional promise that 𝐻 is frustration-free in the YES-case.

𝑘-LH ∼ MAX-𝑘-SAT & 𝑘-QSAT ∼ 𝑘-SAT
Complexity of 𝑘-LH is well understood (QMA-complete for 𝑘 = 2). For
𝑘-QSAT we know:
2-QSAT is in P [Bra06].
3-QSAT is QMA1-complete [GN13] (QMA1 is QMA with perfect
completeness).

→ Complexity transition like in the classical setting. But in quantum,
the study of systems of higher local dimension are also physically
motivated; 2-QSAT becomes much harder:

Definition ((𝑘, 𝑙)-QSAT). 2-QSAT, where each projector acts on a
qu-𝑘-it and a qu-𝑙-it (i.e. ℂ𝑘 ⊗ ℂ𝑙).

(3, 5)-QSAT is QMA1-complete [ER08].
(2, 3)-QSAT is NP-hard, classical (2, 3)-SAT is NP-complete
[Nag08].

Quantum SAT on a line of qu-𝑑-its is also of great interest:
Classical 1𝐷-SAT is in P for any local dimension.
There exists a frustration free qutrit construction with unique, en-
tangled ground state [BCMNS12].
⇒ First step to show that entangled witness can be encoded
QMA1-complete for 𝑑 = 11 [AGIK09; Nag08]

What is the smallest local dimension
that can encode a QMA1-hard problem?

Results
We improve the state of the art regarding (𝑘, 𝑙)-QSAT:

Theorem. (2, 5)-QSAT and (3, 4)-QSAT is QMA1-complete with
soundness Ω(1/𝑇2).

𝑇 denotes the number of gates in the original QMA1-verifier em-
bedded in the QSAT-instance.
Soundness 𝑠 requires that 𝜆min(𝐻) ≥ 𝑠 in the NO-case.
First demonstration that (2, 𝑘)-QSAT is QMA1-hard.

Hardness of (𝑘, 𝑙)-QSAT (new results bold red):

2 3 4 5 6
2 ∈ P NP-H NP-H QMA1-C QMA1-C
3 NP-H QMA1-C QMA1-C QMA1-C
4 QMA1-C QMA1-C QMA1-C
5 QMA1-C QMA1-C

Proof outline.
(1) Circuit-to-Hamiltonian embedding based on [GN13]: Requires a

clock Hamiltonian whose nullspace is spanned by clock states, as
well as (1-local) transition and selection projectors for clock states.
Implement CNOT gates in 2𝐷 to reduce dimensions from (3, 5)
[ER08] to (3, 4).

(2) Prove soundness via novel Nullspace Connection Lemma.
(3) Construct (2, 5) clock Hamiltonian by combining qu-5-its and qubits

into logical qu-4-its and qutrits.
We further improve soundness of the 2𝐷-Hamiltonian [GN13] from
Ω(1/𝑇6) to Ω(1/𝑇2) via a slight modification and analysis using Uni-
tary Labelled Graphs [BCO17] and our Nullspace Connection Lemma.

Theorem. 3-QSAT is QMA1-complete with soundness Ω(1/𝑇2).

First QMA1-hardness result for lines of alternating particles (3, 𝑑):

𝑑 𝑑 ⋯ 𝑑

Theorem. 1𝐷-(3, 𝑑)-QSAT is QMA1-complete for 𝑑 = 76176.

Black-box simulation of any 1𝐷-(𝑑, 𝑑)-QSAT 1𝐷-(3, 𝑑′)-QSAT with
𝑑′ ∈ 𝑂(𝑑4), preserving soundness in the NO-case (similar to Hamil-
tonian simulation [BH17; CMP18])
Theorem follows from the QMA1-hardness of 1𝐷-(11, 11)-QSAT
[Nag08].

Towards qubits on the line: Even 1𝐷-(2, 4)-QSAT can have an en-
tangled ground state.

Theorem. There exists a frustration-free 1𝐷-(2, 4)-Hamiltonian
with unique ground state entangled across all cuts.

(2, 5)-Clock
All that remains to show QMA1-hardness of (2, 5)-QSAT, is a (2, 5)-
clock with 1-local transition projectors ℎ𝑖,𝑖+1 and selection projectors
𝐶≤𝑖, 𝐶≥𝑖.
Idea: Use logical qudits with indicator qubits so that the qudit can
be “selected” with a qubit projector. Example:
Implement logical qutrit with qu-6-it and three qubits.
|1̂⟩ ∝ |1⟩|000⟩ + |4⟩|100⟩, |2̂⟩ ∝ |2⟩|000⟩ + |5⟩|010⟩,
|3̂⟩ ∝ |3⟩|000⟩ + |6⟩|001⟩ (enforce with (2, 6)-projectors)

Implement a logical (3, 4)-clock.
Qutrits can represent three states unborn, alive, dead, which seems
necessary for a clock with 2-local transitions (see [ER08]).
Qu-4-its can have two alive states, allowing for 1-local transitions.
We need to limit use of indicator qubits compared to example since
each increases the qu-𝑑-it dimension.
Logical qutrit on qu-5-it
(𝑢, 𝑎, 𝑑, 𝑥, 𝑑′) and two qubits:
|u⟩ ∝ |𝑢, 1, 0⟩ + |𝑥, 0, 0⟩
|a⟩ ∝ |𝑎, 0, 0⟩ + |𝑥, 1, 0⟩
|d⟩ ∝ |𝑑, 0, 0⟩ + |𝑑′, 0, 1⟩

Logical qu-4-it on qu-5-it
(𝑢, 𝑎1, 𝑎2, 𝑑, 𝑢′) and one qubit:

|U⟩ ∝ |𝑢, 0⟩ + |𝑢′, 1⟩
|A1⟩ ∝ |𝑎1, 0⟩
|A2⟩ ∝ |𝑎2, 0⟩
|D⟩ ∝ |𝑑, 0⟩

Key features: 1-local qubit projector suffices to
identify |U⟩, |d⟩, “|u⟩ or |a⟩” transition from |u⟩ to |a⟩.

Clock states: |𝐶1⟩,… , |𝐶𝑁⟩ with

|𝐶𝑖−1⟩ {
⋯

+ |dD ⋯ dD dA1 uU uU ⋯ uU ⟩

|𝐶𝑖⟩

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪
⎩

|dD ⋯ dD dA2 uU uU ⋯ uU ⟩
+ |dD ⋯ dD dD aU uU ⋯ uU ⟩
+ |dD ⋯ dD dD dU uU ⋯ uU ⟩
+ |dD ⋯ dD dD dA1 uU ⋯ uU ⟩

|𝐶𝑖+1⟩ { |dD ⋯ dD dD dA2 uU ⋯ uU ⟩
+ ⋯

We implement |𝐶𝑖⟩ ↔ |𝐶𝑖+1⟩ transitions as |𝑎1⟩ ↔ |𝑎2⟩.
Remark: We get a (3, 4)-clock “for free”.

We can enforce the clock space with a (2, 5)-QSAT Hamiltonian.
Projectors (each 522 52 block above is labeled 𝛼𝛽𝛾 𝛿𝜖):

ℎ𝑖,𝑖+1(𝑈𝑍) =
1
2
(𝕀𝑍 ⊗ |𝑎1⟩⟨𝑎1|𝛿𝑖 + 𝕀𝑍 ⊗ |𝑎2⟩⟨𝑎2|𝛿𝑖
−𝑈†

𝑍 ⊗ |𝑎1⟩⟨𝑎2|𝛿𝑖 − 𝑈𝑍 ⊗ |𝑎2⟩⟨𝑎1|𝛿𝑖)
𝐶(5)
≤𝑖 = |𝑢⟩⟨𝑢|𝛿𝑖 𝐶(2)

≤𝑖 = |1⟩⟨1|𝜖𝑖
𝐶(5)
≥𝑖 = |𝑑⟩⟨𝑑|𝛼𝑖

𝐶(2)
≥𝑖 = |1⟩⟨1|𝛾𝑖

Note: We need qu-5-it and qubit variants of 𝐶≤𝑖, 𝐶≥𝑖 for bipartiteness.

2𝐷 Hamiltonian
Clock Hamiltonian 𝐻clock with 𝒩(𝐻clock) = Span{|𝐶1⟩,… , |𝐶𝑛⟩}

Transition projectors ℎ𝑖,𝑖+1(𝑈) on ℋcomp ⊗ℋclock with

(𝕀 ⊗ Πclock) ℎ𝑖,𝑖+1(𝑈) (𝐼 ⊗ Πclock) ∼ (𝕀 ⊗ |𝐶𝑖⟩⟨𝐶𝑖| + 𝕀 ⊗ |𝐶𝑖+1⟩⟨𝐶𝑖+1|)
− (𝑈† ⊗ |𝐶𝑖⟩⟨𝐶𝑖+1| + 𝑈 ⊗ |𝐶𝑖+1⟩⟨𝐶𝑖|).

Selection projectors 𝐶≤𝑖, 𝐶≥𝑖 on ℋclock with
Πclock𝐶≥𝑖Πclock ∼ ∑𝑁

𝑗=𝑖|𝐶𝑗⟩⟨𝐶𝑗|.

Theorem (informal, based on [GN13]). Any QMA1-verifier can
be reduced to a QSAT instance 𝐻 on ℋcomp ⊗ ℋclock,1 ⊗ ℋclock,2
(𝑍,𝑋, 𝑌). 𝐻 only has terms of the form (𝐻clock)𝑋 + (𝐻clock)𝑌, 𝐶≤𝑥 ⊗
𝐶≥𝑦, ℎ𝑖,𝑖+1(𝑈)𝑍,𝑋, |0⟩⟨0|𝑍 ⊗ ℎ𝑖,𝑖+1(𝕀)𝑋. Under certain commutation
assumptions, soundness is Ω(𝛾(𝐻clock)/𝑁2), for spectral gap 𝛾(⋅).

Gadgets of the 2𝐷-Hamiltonian on the grid of clock states (modified
from [GN13]):

(a) (𝐶≥3)𝑋 ⊗ (𝐶≤3)𝑌 (b) (𝐶≥3)𝑋 ⊗ (ℎ2,3(𝕀))𝑌 (c) ℎ2,3(𝑈)𝑡,𝑌

(d) |1⟩⟨1|𝑐 ⊗ (ℎ2,3)𝑌 (e) CNOT on |0⟩𝑐 (f ) CNOT on |1⟩𝑐

CNOT gadget (up to 1-local rotation):
Transitions in 𝑋- and 𝑌-direction
implement non-commuting 𝑈𝑥, 𝑈𝑦.
Cond. transitions route |0⟩ through
𝑈𝑥𝑈𝑦 (e), and |1⟩ through 𝑈𝑦𝑈𝑥 (f ).
Implements gate
𝑉 = |0⟩⟨0| ⊗ 𝑈𝑥𝑈𝑦 + |1⟩⟨1| ⊗ 𝑈𝑦𝑈𝑥
from top left to bottom right.
“Center” of (e), (f ) is penalized since
𝑈𝑥𝑈𝑦 ≠ 𝑈𝑦𝑈𝑥.

Embed circuit 𝑈2𝑉𝑈1
by chaining gadgets to-
gether (Note: separate
gadget for 1-local gate):
Zig-zag edges rep-
resent 𝕀-transitions
connecting the gad-
gets.
Each gadget embeds
a single gate from TL
to BR.
Soundness follows
from the next lemma:

Nullspace Connection Lemma (informal). Given circuit Hamilto-
nian on a graph of clock states:
𝐻1 (gate gadgets): 𝑚 circuit Hamiltonians on clock states 𝐾𝑖
(𝐾𝑖 ∩𝐾𝑗≠𝑖 = ∅) implementing 𝑈𝑖 from input node 𝑢𝑖 to output 𝑣𝑖.
𝐻2 (zig-zag edges): 𝕀-transitions from 𝑣𝑖 to 𝑢𝑖+1.

Then 𝐻 = 𝐻1 + 𝐻2 embeds circuit 𝑈𝑚⋯𝑈1 from 𝑢1 to 𝑣𝑚 with
𝛾(𝐻) = Ω(𝛾(𝐻1)/𝑚2).

Note: This lemma also applies to Kitaev’s original circuit Hamiltonian
and gives soundness without the random walk approach.

𝑈1 𝑈3 𝑈5 𝑈7𝕀 𝕀 𝕀

The nullspace of red edges on their time steps is spanned by
|𝜓⟩ ⊗ |𝑡 − 1⟩ + 𝑈𝑡|𝜓⟩ ⊗ |𝑡⟩.
Connect nullspaces to history state ∑7

𝑡=0𝑈𝑡⋯𝑈1|𝜓⟩|𝑡⟩.
Use 𝐻in to set |𝜓⟩ = |0⟩ on 𝑡 = 0.
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1𝐷-(3, 𝑑)-QSAT

Lemma (black-box simulation). Let 𝐻 = ∑𝑛−1
𝑖=1 𝐻𝑖,𝑖+1 be a Hamil-

tonian on a line of 𝑛 qu-𝑑-its with 𝐻𝑖,𝑖+1 ⪰ 0. There exists a
poly-time computable 𝐻 ′ on an alternating chain of 𝑛 +1 qu-𝑑′-its
(𝑑′ = 𝑂(𝑑4)) and 𝑛 qutrits, such that 𝜆min(𝐻) = 0 iff 𝜆min(𝐻 ′) = 0
and 𝛾(𝐻 ′) = Ω(𝛾(𝐻)/‖𝐻‖).

Idea: Logically split qu-𝑑′-its into two qu-𝑑′′-its (𝑑′′ = √𝑑′).
Each 𝑑′′ × 3 × 𝑑′′ system logically represents a qu-𝑑-it.
“Move” the logical qu-𝑑-it between the qu-𝑑′′-its so that 𝐻𝑖,𝑖+1 can
be simulated 1-locally on qu-𝑑′-it 𝛼𝑖.

𝛼0

𝛾0 𝛿0
𝐻ball/2

𝛽1
𝐻ball/2

logical qu-𝑑-it

𝛼1

𝛾1 𝛿1
𝐻ball/2

𝛽2
𝐻ball/2

𝐿⊗2(𝐻1,2)𝐿†⊗2

logical qu-𝑑-it

𝐿⊗2(𝐻2,3)𝐿†⊗2

𝛼3

𝛾3 𝛿3 ⋯

Logical qu-𝑑-it (enforced with 𝐻ball/2):
Think of the 𝑑′′ × 3 × 𝑑′′ systems as bins able to hold red or black
balls. Outer bins have capacity 2𝑑 and inner only 1.
Write standard basis states as |𝑐1, 𝑐2⟩ (𝑐1 red and 𝑐2 black balls).
Transitions enforce superposition of all configurations with the same
total number of red and black balls. E.g., |2, 1⟩|0, 0⟩ ↔ |1, 1⟩|1, 0⟩.
For 𝑖 ∈ [𝑑], logical | ̂𝑖 ⟩ is superposition over all configurations with
𝑐∗𝑖,1 ≔ 2(𝑖 − 1) red and (𝑐∗𝑖,2 ≔ 2(𝑑 − 𝑖 + 1)) + 1 black balls.
⇒ A full outer bin with even number of red balls determines | ̂𝑖 ⟩.
In total 2𝑑 +1 balls, so that if an outer bin is empty, the middle bin
must be occupied. → Penalize the “all empty” configuration.

Some configurations of |2̂ ⟩ for 𝑑 = 2:

|2, 2⟩𝛿 |0, 1⟩𝛽 |0, 0⟩𝛾 |2, 2⟩𝛿 |0, 0⟩𝛽 |0, 1⟩𝛾 |1, 2⟩𝛿 |1, 0⟩𝛽 |0, 1⟩𝛾

|1, 2⟩𝛿 |0, 0⟩𝛽 |1, 1⟩𝛾 |0, 2⟩𝛿 |1, 0⟩𝛽 |1, 1⟩𝛾 |0, 2⟩𝛿 |0, 0⟩𝛽 |2, 1⟩𝛾

We can now lift the original Hamiltonian terms 𝐻𝑖,𝑖+1 into the logical
space via the isometry 𝐿 = ∑𝑑

𝑖=1|𝑐
∗
𝑖,1, 𝑐∗𝑖,2⟩⟨𝑖|.

Let 𝐻 ′ = 𝐻 ′
logical + 𝐻 ′

sim, where 𝐻 ′
sim = ∑𝑖(𝐿 ⊗ 𝐿)(𝐻𝑖,𝑖+1)(𝐿 ⊗ 𝐿)†𝛼𝑖

.
Similar to Hamiltonian simulation, we obtain:

Lemma. 𝑇†𝐻 ′𝑇 = 1
9𝐻 for isometry 𝑇.

Open Problems
Complete the complexity classification of (𝑘, 𝑙)-QSAT. The cases
(2, 4), (2, 3), (3, 3) remain open.
Hardness of 1𝐷-QSAT on qu-𝑑-its with 𝑑 < 11?
–Due to our black-box approach, we get a huge second dimension.
Is 1𝐷-(2, 𝑑)-QSAT still QMA1-hard?
1𝐷-(2, 3)-QSAT instances with fully entangled ground space?

Entangled 1𝐷-(2, 4)-QSAT
We again use balls and bins, but now just a single color. Large bins
have capacity 3 and small bins capacity 1. Configurations evolve with
the following rules (also in reverse):
First large bin always has at least one ball, and last at most 2.
If large bin is nonempty, small bin to the right empty, add one ball
to both: |𝑐, 0⟩ ↔ |𝑐 + 1, 1⟩.
If small bin is nonempty and large bin to the right empty, move ball:
|1, 0⟩ ↔ |0, 1⟩.

Uniform superposition of config-
urations (𝑙 𝑠 ∣ 𝑙 𝑠 ∣ 𝑙 𝑠):

| 1 0 | 0 0 | 0 0 ⟩
+ | 2 1 | 0 0 | 0 0 ⟩
+ | 2 0 | 1 0 | 0 0 ⟩
+ | 3 1 | 1 0 | 0 0 ⟩
+ | 2 0 | 2 1 | 0 0 ⟩
+ | 3 1 | 2 1 | 0 0 ⟩
+ ⋯

Obtain “clock state” by factoring
|∗⟩ = √1/2(|20⟩ + |31⟩):

| 1 0 | 0 0 | 0 0 ⟩
+ | 2 1 | 0 0 | 0 0 ⟩
+ | | 1 0 | 0 0∗ ⟩
+ | | 2 1 | 0 0∗ ⟩
+ | | | 1 0∗ ∗ ⟩
+ | | | 2 1∗ ∗ ⟩


