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Abstract

The quantum analogue of NP, called QMA (Quantum Merlin Arthur) has the physically motivated
complete problem of estimating the ground state energy of a local Hamiltonian. A related problem
is simulating the measurement of a local Hamiltonian’s ground state. Ambainis (CCC 2014)
showed that this problem, denoted APX-SIM (Approximate Simulation), is PQMA[log]-complete.
PQMA[log] is the class of problems that can be solved by a deterministic polynomial-time Turing
machine that may ask a QMA-oracle O(log(n)) adaptive queries. Gharibian, Piddock, and Yirka
(STACS 2020) show that a polynomial number of parallel queries can be simulated using a
logarithmic number of adaptive queries and therefore PQMA[log] = P∥QMA. In the classical setting,
an even stronger result is given by Gottlob (JACM 1995): A polynomial number of NP queries
with a tree-like dependency graph can be simulated using a logarithmic number of adaptive
queries (i.e., PNP[log] = TREES(NP)). We translate this result to the quantum setting and show
PC[log] = TREES(C) for C ∈ {MA,QCMA,QMA,QMA(2)}. We also improve the classical result
by showing that even a query graph of bounded treewidth can be simulated with logarithmically
many adaptive queries.

PQMA[log] can be viewed as an upper bound of QMA since equality seems unlikely. Another upper
bound due to Vyalyi (ECCC 2013) is A0PP. We investigate whether one of these upper bounds
is stronger than the other and give some evidence to the contrary by proving oracle separations
between coNP ⊆ PQMA[log] and A0PP, as well as between SPP ⊆ A0PP and P∥QMA(2) ⊇ PQMA[log].

Gharibian and Sikora (TOCT 2018) introduce the ground state connectivity problem (GSCON),
which asks whether there exists a sequence of m l-local unitaries that maps a ground state |ψ⟩
to another ground state |ϕ⟩, such that intermediate states have energy at most λ +∆, where λ
is the ground state energy. We investigate an exponential version, called GSCONexp, with l = 2,
inverse exponential ∆, and exponential m. We show that GSCONexp lies between PSPACE and
NEXP. We define a quantum analogue of NPSPACE as potential upper bound for GSCONexp,
called QCMASPACE, with polynomially many qubits and an exponentially long classical proof.
However, we are able to show QCMASPACE = NEXP. Finally, we prove that one can map any
ground state to any other using m ≤ 2poly(n) 2-local unitaries, such that intermediate states have
energy below λ+∆ for ∆ = 2− poly(n).
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Chapter 1

Introduction

We begin this thesis by motivating our topic of research and providing some background.

1.1 Motivation and Background

The complexity classes P and NP are central to theoretical computer science. The study of NP-
completeness has helped us understand why so many problems appear to have no efficient algorithms.
Cook and Levin have shown that any problem in NP can be reduced to the boolean satisfiability
problem (3-SAT) in polynomial time [16, 48]. Karp has then shown that boolean satisfiability can
in turn be reduced to a multitude of well-known combinatorial and graph theoretical problems [38].
Therefore, either none or all of these problems permit an efficient solution.

It is also of interest what lies beyond NP. Stockmeyer [57] defined the polynomial hierarchy
(PH), of which the 0-th level is just P and subsequent levels are defined by giving a P, NP, or coNP

machine oracle access to a class from the previous level. For example, we have ∆P
2 = PNP on the

second level of PH. We can imagine this class as a Turing machine that may ask an oracle whether
some boolean formula is satisfiable. PNP has the following complete problem, as shown by Krentel
[46]. Does the lexicographically largest satisfying assignment x1 · · ·xr of a given satisfiable boolean
formula have xr = 1?

The next question one might ask is what happens if we impose restrictions on how the Turing
machine in PNP may ask its queries. We are particularly interested in PNP[log], where the Turing
machine may only ask O(log n) queries on an input of length n. This class was first studied by
Papadimitriou and Zachos [54]. As shown by Wagner [63, 62], the following problem is PNP[log]-
complete. Does the solution to a MAX-k-SAT instance have even Hamming weight (i.e., the
assignment that maximizes the number of satisfied clauses)? Many similar problems involving the
verification of a property of a solution to a polynomially bounded optimization problem are also in
PNP[log] or even PNP[log]-complete.

A different way to restrict PNP is to say that all queries must be asked at the same time, or in
other words, one query cannot depend on the outcome of another. This class is denoted by P∥NP

and has been shown to be equal to PNP[log] by Hemachandra [35] as well as Buss and Hay [13].
Another way to view PNP is as a directed acyclic graph (DAG) of queries with directed edges

between two queries if one query depends on the result of another. By restricting the query
dependency graph to a tree, this problem becomes PNP[log]-complete, as shown by Gottlob [31].

These aforementioned results have analogues in the quantum setting. The research in that
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direction began with Kitaev [43] in 1999, who proved in a “quantum Cook-Levin theorem”, the
problem of estimating the ground state energy of a k-local Hamiltonian for k ≥ 5 is complete for
the quantum analogue of NP, called Quantum Merlin Arthur (QMA). Formally, we are given a
succinct description of a Hermitian matrix H =

∑
iHi ∈ C2n×2n , where each Hi is a Hermitian

that acts non-trivially on at most k qubits. The ground state is then the eigenvector of H with
the smallest eigenvalue, which we call the ground state energy. This k-local Hamiltonian problem
can be seen as a quantum analogue of the boolean satisfiability problem. We can think of the
individual terms Hi as clauses. A quantum state |ψ⟩ “satisfies” such a clause if it has low energy on
Hi (i.e., ⟨ψ|Hi|ψ⟩ is small). This problem is physically motivated. The ground state corresponds
to the state of a quantum system at low temperature. Since then, a multitude of other physical
problems have been shown to be QMA-complete. We refer the reader to the surveys [53, 11, 23]
and the references therein.

One such problem of particular interest is Approximate Simulation (APX-SIM), introduced by
Ambainis [4]. Suppose we want to simulate the experiment of cooling down a quantum many-body
system and then performing some measurement. Formally, we must decide, given Hamiltonian H
describing the system and observable A describing the measurement, whether there exists a ground
state |ψ⟩ of H, such that ⟨ψ|A|ψ⟩ is below some threshold. Ambainis proved that this problem
is PQMA[log]-complete [4]. We remark the similarity to the classical PNP[log]-complete problem of
determining the Hamming weight of the assignment that satisfies the maximum number of clauses
in a boolean formula.

This leads us to the question whether the results for parallel queries and query trees also hold
in the quantum setting. Gharibian, Piddock, and Yirka [24] have shown that this is indeed the case
(i.e., PQMA[log] = P∥QMA). They also prove the same result for NP and StoqMA by reductions to
restricted variants of APX-SIM. This brings us to the first question we investigate in this thesis: Is
PQMA with tree-like query dependencies also equal to PQMA[log]? We answer this question in the
affirmative and also show the same result for MA, QCMA, and QMA(2).

Another way to see PQMA[log] is as an upper bound to QMA. We believe that QMA is strictly
smaller than PQMA[log] since it trivially holds that coQMA ⊆ PQMA[log], and coQMA ⊆ QMA is
generally not considered to be true. One might now ask for an upper bound to PQMA[log]. It
was shown by Beigel, Hemachandra, and Wechsung [9] that PNP[log] ⊆ PP, where PP is the class
of problems solvable in probabilistic polynomial time with unbounded error (i.e., the acceptance
probability difference between yes- and no-instances is positive but may be arbitrarily small).
Gharibian and Yirka [26] prove that PQMA[log] is contained in PP. It further holds that QMA ⊆ PP

as noted by Kitaev and Watrous [45]. Vyalyi [61] gave a stronger result, namely that QMA ⊆ A0PP,
and A0PP = PP would imply PH ⊆ PP. A simple proof for QMA ⊆ PP is also given by Marriott
and Watrous [50]. So, we have two upper bounds on QMA: PQMA[log] and A0PP. One might ask
whether one of these is contained in the other. We give some evidence to the contrary by providing
oracle separations in both directions.

Returning to Hamiltonians, one might also be interested in properties of the ground space itself.
Gharibian and Sikora [25] introduce the complexity class GSCON, which asks whether one ground
state can be transformed into another using only local unitary gates, such that all intermediate
states also have low energy. That research was partially inspired by the classical analogue: Given a
3-CNF formula ϕ and solutions x and y, does there exist a sequence of bitflips that transforms x into
y, such that all intermediate strings are also valid solutions? Gopalan et al. [29] have shown that this
problem is PSPACE-complete. GSCON permits many parameterizations. For a polynomially long
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sequence of 2-local gates and at least inverse polynomial error terms, GSCON is QCMA-complete.
For an exponentially long sequence of 1-local gates and inverse polynomial error terms, GSCON is
PSPACE-complete. A succinct version of GSCON is even shown to be NEXP-complete. We ask
now the question of how the complexity of the problem changes if exponentially many 2-local gates
are allowed. We believe this GSCON parameterization, denoted GSCONexp, to be of independent
interest because its intermediate states do not necessarily have a succinct representation, which
makes containment in PSPACE uncertain. We prove that GSCONexp lies between PSPACE and
NEXP. Also, we investigate one idea for a better upper bound on GSCONexp, namely a class with
a polynomially space-bounded quantum verifier and an exponentially long classical proof. We call
this problem QCMASPACE and show it to be equal to NEXP. Another observation we make is
that in principle any pair of ground states of a Hamiltonian is connected through the span. We
give an explicit construction for a sequence of 2-local unitaries that maps one state to another
while keeping the distance to the span arbitrarily low. We conclude that GSCONexp with any error
threshold becomes trivial when permitting sufficiently long unitary sequences.

1.2 Related Work

The previous section mainly served to motivate our line of research and illustrate how the investigated
problems relate to each other. In the following, we give additional information on related research.
Formal definitions of the relevant complexity classes can be found in Chapter 2.

PNP[log]. As mentioned above, PNP[log] is contained in the second level of the polynomial hierarchy
PH. It holds that PNP[log] = P∥NP [35, 13]. Another well-known PNP[log]-complete problem
is determining a winner in Lewis Carroll’s 1876 voting system, as proven by Hemaspaandra,
Hemaspaandra, and Rothe [36]. Gottlob [31] showed that even PNP with a tree-like query dependency
graph equals PNP[log]. We present a proof for that result in Section 3.1. The main idea is to
construct a total solution weight function that assigns a weight to a given set of proofs and query
results for a query graph. This formula is maximized by a correct solution. If it is polynomially
bounded, the weight of the correct solution can be easily found using logarithmically many oracle
queries. Gottlob gives an algorithm to reconfigure any tree into a suitable graph of low depth.

Other parameterizations PNP[k] have also been studied. It remains an open question to the
best of our knowledge whether PNP[k], PNP[logk n] (k = O(1)), and PNP coincide. One result due to
Hartmanis [34] in that direction is that if PNP[1] = PNP[2], then PNP[1] = PNP[log] and PH collapses.

Hamiltonians. Kitaev’s initial construction for a Hamiltonian from a QMA verifier is presented
in Section 2.3 and uses a 5-local Hamiltonian. Kempe and Regev improved this to k = 3 [40].
Kempe, Kitaev, and Regev subsequently improved this to k = 2 [39]. Different parameterizations
of the local Hamiltonian problems are also complete for different complexity classes. The separable
sparse Hamiltonian problem due to Chailloux and Sattath [14] is QMA(2)-complete (QMA with
two unentangled proofs) and asks if there exists a separable state (i.e., |ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩) below
a certain energy with respect to a given sparse Hamiltonian. Perhaps surprisingly, the separable
local Hamiltonian problem is still contained in QMA. Fefferman and Lin [17] prove that QMA

with an exponentially small gap (between the acceptance probabilities for yes- and no-instances) is
PSPACE-complete, as well as the corresponding precise local Hamiltonian problem.
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Ambainis [4] considers problems “slightly beyond QMA”. Among these are estimating the spectral
gap (i.e., the difference between the two smallest eigenvalues), which is contained in PQMA[log] and,
most relevant to our line of research, the approximate simulation problem (APX-SIM): Given a k-
local Hamiltonian H, and an l-local observable A, does there exist a ground state |ψ⟩ of H such that
⟨ψ|A|ψ⟩ ≤ α (yes-case), or does it hold for all |ψ⟩ with ⟨ψ|H|ψ⟩ ≤ λmin(H) + δ that ⟨ψ|A|ψ⟩ ≥ β
(no-case), where δ and β − α are lower-bounded by an inverse polynomial. λmin(H) denotes the
minimum eigenvalue (ground state energy) of H. APX-SIM is shown to be PQMA[log]-complete for
logarithmic k and l.

Gharibian and Yirka [26] improve this to k = 5 and l = 1. Gharibian, Piddock, and Yirka [24]
further improve the result to k = 2 for physically motivated Hamiltonian models.

PQMA[log]. As remarked by Gharibian and Yirka [26], an important difference between QMA and
NP is the fact that QMA is a class of promise problems, whereas NP is a class of languages. Promise
problems differ from languages in that they additionally have invalid instances. For example, in
QMA a yes-instance is accepted with probability at least 2/3 and a no-instance with probability at
most 1/3. But there may be strings whose acceptance probability lies strictly within that range.
Those are invalid instances. As previously mentioned, decreasing that promise gap to an inverse
exponential makes QMA equal to PSPACE. When giving a Turing machine oracle access to a
promise class, it may ask invalid queries, which will be arbitrarily answered. We require that the
Turing machine accepts yes-instances and rejects no-instances regardless of how invalid queries are
answered. It may accept/reject arbitrarily on invalid instances.

To show that PQMA[log] ⊆ APX-SIM, Ambainis constructs a “query Hamiltonian” (see Sec-
tion 3.3.1) that contains the Hamiltonians for all possible queries the Turing machine may ask
the oracle. Appropriate weights and terms that “activate” individual Hamiltonians depending on
prior query answers ensure that the ground state contains a valid string of query answers. The
result PC[log] = P∥C for C ∈ {NP,StoqMA,QMA} is shown using a similar query Hamiltonian
construction [24]. The results for NP and StoqMA are obtained by restricting APX-SIM to certain
classes of Hamiltonians and observables.

GSCON. The ground state connectivity problem is stated as follows [25]. Given a k-local
Hamiltonian H and ground states |ψ⟩ and |ϕ⟩ with ⟨ψ|H|ψ⟩ ≤ η and ⟨ϕ|H|ϕ⟩ ≤ η, does there exist
a sequence of l-local unitaries U1, . . . , Um such that ∥Um · · ·U1|ψ⟩− |ϕ⟩∥ ≤ ε and ⟨ψi|H|ψi⟩ ≤ η+ ε
for all intermediate states |ψi⟩ = Ui · · ·U1|ψ⟩? Besides the already mentioned classical motivation,
GSCON is also physically motivated, namely with respect to quantum memories and stabilizer
codes. One approach to implement quantum memory in a low temperature system is to encode
the basis states |0̃⟩, |1̃⟩ in the ground space of a Hamiltonian with a sufficiently large spectral gap.
The spectral gap ensures that noise does not easily take the system out of its ground space. But
it also is necessary that noise does not alter the state in ground space, which is where GSCON

comes into play. In a no-instance, no short unitary sequence (noise is generally assumed to be local)
can map one ground state to another in low energy space. Therefore, we can be relatively certain
that random noise will not change the stored state. This intuition is used in Kitaev’s toy chain
model [41] and the toric code [42, 44].

Note that as we show in this thesis, one can always construct exponentially long unitary
sequences such that ⟨ψi|H|ψi⟩ ≤ η + 2− poly(n) for all intermediate states. This does not appear to
be an issue for the physical model since it seems extremely unlikely that these long and precise
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sequences are caused by noise.
Gosset, Mehta, and Vidick [30] proved that GSCON is still QCMA-hard when restricted to

commuting Hamiltonians (i.e., the local terms Hi pairwise commute).

A0PP. The class A0PP was introduced by Vyalyi [61] to prove that if QMA = PP, then PH is
contained in PP. A problem is in A0PP if there exists a GapP function g (i.e., the difference in the
number of accepting and rejecting paths of a nondeterministic polynomial-time Turing machine)
and a polynomial-time computable threshold function t, such that for a yes-instance x we have
g(x) ≥ t(x) and 0 ≤ g(x) ≤ t(x)/2 for a no-instance. Kuperberg [47] showed that A0PP = SBQP,
where SBQP is defined like BQP but with acceptance probability ≥ 2−p(n) in the yes-case and
≤ 2−p(n)−1 in the no-case for some polynomial p.

1.3 Our Contribution

We give a brief overview of our results and proof techniques. Detailed definitions and proofs are
given in the following chapters.

1.3.1 QMA Query Trees

The complexity class TREES(C) is defined as the set of promise problems that can be reduced to a
tree of C-queries in polynomial time.

Theorem 1.1. TREES(C) = PC[log] for C ∈ {MA,QCMA,QMA,QMA(2)}.

For C = QMA, we give two proofs. We begin by restating Gottlob’s [31] proof for TREES(NP) =

PNP[log] (see Section 3.1), albeit slightly rephrased to better fit our needs. We model queries as
circuits that receive as input the outputs of their dependencies, whereas Gottlob used boolean
formulas with special linking variables that are set to 1 iff the associated formula is satisfiable. This
change allows us to model the problem for different types of queries.

The first proof (see Section 3.3) is via reduction to APX-SIM. We construct a query Hamiltonian
(similar to [4]) that contains Hamiltonians for each query. These Hamiltonians are constructed
from QMA-verifier circuits using a modified version of Kitaev’s Hamiltonian construction (see
Section 2.3). The main difficulty is that the number of possible queries may be exponential. We
work around this issue by having the query Hamiltonians operate on shared qubits, such that one
Hamiltonian conceptually receives the result of the other as input. Individual Hamiltonian terms are
weighted using a modified version of Gottlob’s admissable weighting functions (see Definition 3.6).
We also make use of his techniques to “flatten” the query tree (see Sections 3.1.2.3 and 3.3.3).

The second proof (see Section 3.4) takes a more general approach in that it adapts Gottlob’s
total solution weight function to the quantum setting (see (3.5) and (3.12)). This function receives
as input a string of query results and accompanying proofs and outputs a sum of acceptance
probabilities, weighted with an admissable weighting function. The main challenges in applying
this approach to the quantum setting are dealing with invalid queries, and estimating the function
in QMA.

The reasons for giving two proofs are that prior works used a reduction to APX-SIM [4, 26, 24]
and that APX-SIM is a physically well motivated problem. On the other hand, it might seem quite
indirect to go that route, especially for classical classes like MA. Therefore, we believe a direct
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proof to be interesting in of itself. Furthermore, this proof is quite simple to generalize to other
complexity classes, which we did for MA, QCMA, and QMA(2) (see Section 3.5).

1.3.2 Bounded Treewidth Query Graphs

We ask whether it possible to go beyond query trees. It seems natural to consider graphs of bounded
treewidth, since they are “almost trees” in a certain sense. We call the complexity class of problems
that can be reduced to an NP-query graph of bounded treewidth BTW(NP).

Theorem 1.2. BTW(NP) = PNP[log].

We prove this result in Section 3.6 by constructing a tree of constantly sized separators for a
given query graph. Then, we recursively decompose the graph by removing the separator at the
root of the separator tree and creating copies of the entire disconnected graph for each possible
combination of outputs from query nodes in the separator.

Unfortunately, we were not able to apply this approach to the quantum setting.

1.3.3 Upper Bounds for QMA

We compare the upper bounds A0PP and PQMA[log] of NP. In attempting to show PQMA[log] ⊆ A0PP,
we found a simple way to prove PQMA[log] ⊆ PP, for which a rather involved proof is given in [26].
It is known that PP is closed under truth-table reductions (i.e., P∥PP = PP) [21]. Hence, we have
PQMA[log] ⊆ P∥QMA ⊆ P∥PP = PP (see Theorem 4.1).

A0PP does not seem to be closed under complement and therefore not under truth-table
reductions. A problem is in C=P if there exists a g ∈ GapP such that g(x) = 0 in the yes-case and
g(x) ̸= 0 in the no-case. C=P is trivially contained in the complement of A0PP.

Theorem 1.3. C=P ⊆ A0PP implies PH ⊆ PP.

The proof (see Section 4.1) is mainly a restatement of Vyalyi’s [61] proof for “QMA = PP

implies PH ⊆ PP”.
We construct oracle separations between A0PP and PQMA[log] to give some evidence that it is

likely that neither one contains the other. In fact, we construct somewhat stronger separations.

Theorem 1.4. There exists an oracle A such that coNPA ⊈ A0PP
A.

We give a proof from first principles in Section 4.2.2. Therefor, we prove that if a polynomial of
degree n is bounded at positions 1, . . . ,Ω(1) · n2, then it will also be small at 0. We then apply this
observation to A0PP

A and construct an oracle to separate coNP from A0PP via diagonalization.
We further prove that the containment SBQP ⊆ A0PP relativizes.

After devising our own proof, William Kretschmer pointed out a much simpler way to prove
this result using query complexity, which we state in Section 4.2.3. One can view an oracle as
a bitstring X of length N = 2n and show that an SBQP circuit requires Ω(

√
N) queries to that

bitstring to compute the AND-function on X, whereas a coNP verifier only needs a single query.
Hence, our proof might not be of that much interest after all, since the techniques we used are quite
similar to those employed in query complexity.

For the other direction, we prove the following separation in Section 4.3, where SPP is defined
via a GapP function g such that g(x) = 1 in the yes-case and g(x) = 0 in the no-case, which is
clearly contained in A0PP.
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Theorem 1.5. There exists an oracle A, such that SPPA ̸⊆ P∥QMA(2)A

The main insight we use for the proof is that there must be strings x, such that for all queries |ψ⟩
to the oracle, ⟨ψ|x⟩ is small. In other words, some strings will only be queried with exponentially
small weight. Adding or removing these strings to A does not change the result of positively
answered queries (the proof will still be accepted). By repeatedly adding or removing such strings
to and from A, we can force any P∥QMA(2)A verifier to make a mistake.

1.3.4 GSCONexp

We define the class GSCONexp as GSCON with an exponentially small promise gap and exponentially
long 2-local unitary sequences (see Definition 5.5). We are interested in how powerful that class is
and show in Section 5.1

Theorem 1.6. PSPACE ⊆ GSCONexp ⊆ NEXP.

Note that the containment in NEXP is trivial. To prove PSPACE ⊆ GSCONexp, we adapt the
proof for QCMA ⊆ GSCON due to Gharibian and Sikora [25]. Their proof works by constructing a
Hamiltonian H from the QCMA verifier and embedding that Hamiltonian in a larger one. In the
yes-case, the ground state is efficiently constructible and the starting state can be mapped to the
target state via the ground state. In the no-case, it can be shown that some intermediate state
must have significant overlap with H and will therefore have high energy. For GSCONexp, we use
the same approach but with the PSPACE-complete precise local Hamiltonian problem [17], using
the fact that with exponentially many 2-local gates any state is constructible.

In an attempt to give a better upper bound than NEXP, we define a quantum analogue of
NPSPACE, which we call QCMASPACE (see Section 5.2). It consists of an exponentially long
quantum circuit with polynomially many qubits and an exponentially long classical proof. The
proof is “streamed” to the verifier, which is modelled with special gates that are replaced with either
X or I, depending on the associated proof bit. However, in a straightforward application of the
PCP Theorem we show

Theorem 1.7. QCMASPACE = NEXP.

Another interesting question with regard to GSCONexp is which values make sense for the
promise gap, specifically the bound on the energy of intermediate states. We argue in Section 5.3
that by making m sufficiently large, any GSCONexp instance becomes trivial.

Theorem 1.8. Let H ∈ Herm(Cd), d = 2n with 0 ≼ H ≼ I, and |ψ⟩, |ϕ⟩ ∈ Cd such that
⟨ψ|H|ψ⟩ ≤ η and ⟨ϕ|H|ϕ⟩ ≤ η. For ε ≥ 2− poly(n), we can construct a sequence of 2-local unitaries
U1, . . . , Um with m = O(2poly(n)), such that

∥Um · · ·U1|ψ⟩ − |ϕ⟩∥∞ ≤ ε,

and for all |ψi⟩ := Ui · · ·U1|ψ⟩
⟨ψi|H|ψi⟩ ≤ η + ε.

For this proof, we devise a general decomposition of unitaries close to identity into 2-local gates
close to identity. The prior 2-local decompositions known to us make use of gates far from identity
(e.g., CNOT). That seems excessive to decompose a unitary U = eitH with very small t. We give an
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approximate decomposition eitH ≈∏j e
itjHj , where

∑
j |tj | is bounded by 2poly(n)|t|1/2n. Basically,

we can decompose a unitary with a short pulse time into many local unitaries with short pulse
times. For that, we first write H =

∑
j αjPj in the Pauli basis (i.e., each Pj is a tensor product of

the Pauli matrices and identity) and apply the Suzuki decomposition [58] (see Lemma 5.14)

eiH =
∏
j

eiαjPj +O(t2),

where
∑
j |αj | ≤ t. Clinton, Bausch, and Cubitt [15] give an exact 2-local decomposition for the

eiαjPj terms with bounded pulse times. We use a slightly different decomposition since we were not
able to verify the proof sketch given in [15].

1.4 Future Work

We identify several open problems that we find worth researching further. We reduce TREES(QMA)

to APX-SIM with a 6-local Hamiltonian in Section 3.3. Can this be improved (e.g., using [39])?
For which classes C does TREES(C) = PC[log] also hold? Other quantum classes like StoqMA

and UQMA seem like appropriate candidates. We discuss StoqMA briefly in Section 3.5. UQMA

(unique QMA) is defined by Aharonov et al. [2] similar to QMA but with the restriction that in the
yes-case, there exists a proof |ψ⟩ that is accepted with probability at least c and proofs orthogonal
to |ψ⟩ are accepted with probability at most s < c− 1/poly.

We would also like to extend the results for bounded treewidth (see Section 3.6) to promise
problems and thereby QMA and its variants, as we did for TREES(C).

It would also be interesting to find a better upper bound for QMA than A0PP and PQMA[log].
Their intersection might be a possible candidate, although it is not clear to us which problems
besides QMA are contained in A0PP∩PQMA[log]. It seems hard to utilize the multiple queries from
PQMA[log] due to the one-sidedness of A0PP.

Moreover, we would like to strengthen the oracle separation of SPP and P∥QMA(2) to adaptive
queries (i.e., PQMA(2)).

For GSCONexp, we would like to find tighter bounds than PSPACE and NEXP. It seems
GSCONexp should be harder than PSPACE as intermediate states do not necessarily have a
succinct representation, but we were not able to show NEXP-completeness.

We have proven that GSCONexp becomes trivial for sufficiently large m. Does the same also
hold for the 1-local case (see Section 5.3.4.1), or does it remain PSPACE-hard (or even complete)
for unbounded m?

The decomposition given in Section 5.3.3 is inexact due to the use of the Suzuki decomposition.
Is there an exact decomposition with similar properties regarding pulse times?
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Chapter 2

Foundations

In this chapter, we introduce notation that is used throughout the thesis (see Section 2.1). We further
define the complexity classes from prior work that we make use of (see Section 2.2). Afterwards,
we restate the well known Hamiltonian construction used by Kitaev [43] to prove that the k-local
Hamiltonian problem is QMA-complete (see Section 2.3).

2.1 Notation and Useful Results

In this section, we define the notation used throughout this thesis and give a collection of well-known
definitions and results we use.

Let N = {0, 1, 2, . . . },Z,Q,R,C be the sets of natural, integer, rational, real, and complex
numbers, respectively. We denote the real part of a complex number c by Re(c). We define
[n] := {1, . . . , n}. Let S be a set. We define the characteristic function χS , such that χS(x) = 1 if
x ∈ S and χS(x) = 0 otherwise. The superset of S is denoted by 2S := {S′ | S′ ⊆ S}. We write
S1 ∪· S2 for the union of disjoint sets.

The degree of a polynomial p is denoted deg(p). For n ∈ N , we define the falling factorial
(x)n :=

∏n
k=1(n− k + 1).

{0, 1}∗ denotes the set of all binary strings. For x, y ∈ {0, 1}∗, x ◦ y denotes the concatenation
of x and y.

We write poly(n) as a placeholder for an arbitrary polynomial. For example, we say f(n) ≤
poly(n), if f(n) = O(nc) for some c > 0. Similarly, we say f(n) ≥ 2− poly(n), if f(n) = Ω(2−O(nc))

for some c > 0.

2.1.1 Probability Theory

For a random event A, we denote the probability that A occurs by Pr[A]. For a random variable
X, we denote its expected value by E[X].

Lemma 2.1 (Hoeffding’s inequality [37]). Let X1, . . . , Xn be independent random variables, such
that each Xi is within the real interval [ai, bi]. Their empirical mean is defined as

X =
1

n
(X1 + · · ·+Xn).
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For t > 0,

Pr
[∣∣X − E[X]

∣∣ ≥ t] ≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2
)
.

2.1.2 Graph Theory

Let G = (V,E) be a directed graph. For a node v ∈ V , we define indeg(v) and outdeg(v) as the
number of incoming and outgoing edges, respectively. pred(v) := {w ∈ V | (w, v) ∈ E} denotes
the set of immediate predecessors of v and suc(v) := {w ∈ V | (v, w) ∈ E} the set of immediate
successors of v. If G contains no directed cycles, we call it a DAG (directed acyclic graph).

Definition 2.2 (Tree decomposition). Let G = (V,E) be an undirected graph. A tree decomposition
T of G is a graph with nodes X1, . . . , Xm ⊆ V satisfying the following properties:

• Each node of G is contained in a node of T :
⋃m
i=1Xi = V .

• For all v ∈ V , the nodes Xi ∋ v form a connected subtree of T .
• For all e ∈ E, there exists an Xi such that e ⊆ Xi.

The width of a tree decomposition T is defined as width(T ) := maxi|Xi| − 1. The treewidth of G,
denoted tw(G), is defined as the minium width among all possible tree decompositions of G.

Bodlaender has shown that tree decompositions for graphs with bounded treewidth (i.e.,
tw(G) = O(1)) can be computed in linear time [10].

Definition 2.3 (Separator number [32]). Let G = (V,E) be an undirected graph. A set S ⊆ V is
a separator of G if G \ S (i.e., the graph induced by the nodes V \ S) has at at least two connected
components or at most one node. S is balanced if every connected component of G \ S has at most
⌈(|V | − |S|)/2⌉ nodes.

The balanced separator number of G, denoted s(G), is defined as the smallest k such that for
every Q ⊆ G, the induced subgraph G[Q] has a balanced separator of size at most k.

Lemma 2.4 ([32]). s(G) ≤ tw(G).

We define tree decompositions and separator number for a directed graph simply as that of its
undirected version.

2.1.3 Quantum Computation

Generally, we refer to Nielsen and Chuang [51] for an introduction to quantum computation. This
subsection rather serves to refresh the reader’s memory and to establish notation.

Matrices. The set of linear operators on a vector space V is denoted by L(V ) (e.g., L(Cd) consists
of the d× d matrices). We define the Hermitian conjugate of a matrix A ∈ L(Cd) as the complex
conjugate of its transpose, denoted by A† := AT . A is Hermitian if A† = A. The set of Hermitian
matrices is Herm(Cd). A is unitary if A†A = AA† = I. The set of unitaries is U(Cd). We denote
the trace of a matrix A ∈ L(Cd) by Tr(A). The commutator of two matrices A and B is given by
[A,B] := AB −BA. We say A and B commute if [A,B] = 0 and anti-commute if AB +BA = 0.

Hermitian and unitary matrices are normal (i.e., A†A = AA†). Therefore, they have a spectral
decomposition

A =

d∑
j=1

λi|λj⟩⟨λj |,

10



where {|λj⟩} is an orthonormal basis of Cd and |λj⟩ is an eigenvector with eigenvalue for λj . For
unitary matrices, we have λj = eiθj for some θj ∈ R. For Hermitian matrices, we have λj ∈ R. We
say a Hermitian matrix H is positive semi-definite if all of its eigenvalues are nonnegative. We
write A ≽ B if A−B is positive semi-definite, and A ≻ B if A−B is positive definite.

Pauli matrices. The Pauli matrices are given by

X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
.

Herm(C2) can be seen as a 4-dimensional real vector space with the Frobenius inner product
⟨A,B⟩ = Tr(A†B). Note that the norm given by

√
⟨A,A⟩ is equivalent to the Frobenius norm.

The Pauli basis {I,X, Y, Z} is an orthogonal basis of Herm(C2). This can easily be verified by
observing that all pairs of matrices have an inner product of 0 and the dimension Herm(C2) is
bounded by 4. We can also view these matrices as 4-dimensional vectors. The Frobenius inner
product is then equivalent to the usual inner product on the vectors.

The Pauli basis generalizes to higher dimensions, such that Herm((C2)⊗n) is a 22n-dimensional
real vector space with orthogonal basis

{I,X, Y, Z}⊗n =
{
P1 ⊗ · · · ⊗ Pn | P1, . . . , Pn ∈ {I,X, Y, Z}

}
.

Correctness follows again from dimension and pairwise orthogonality.

Operator functions. For a function f : C→ C, we define the operator function on a Hermitian
or unitary matrix by applying f to its eigenvalues:

f(A) =

d∑
j=1

f(λi)|λj⟩⟨λj |

Hence, for U ∈ U(Cd), we have

U =

d∑
j=1

eiθj |λj⟩⟨λj | = eiH , H =

d∑
j=1

θj |λj⟩⟨λj |.

Quantum states. We use the bra-ket notation for quantum states, where |ψ⟩ indicates a column
vector and ⟨ψ| = |ψ⟩† a row vector. We generally assume that any such vector (e.g., |ψ⟩) is a unit
vector (i.e., ⟨ψ|ψ⟩ = 1). The standard basis of Cd is usually written as {|j⟩}. The vector space
associated with a single qubit is B := C2. n qubits have the vector space B⊗n = B1 ⊗ · · · ⊗ Bn,
where ⊗ is the tensor product. We identify individual subspaces of the tensor product (also called
registers) by subscripts. For example, |0⟩B |1⟩A = |1⟩A ⊗ |0⟩B ∈ BA ⊗BB . This allows us to reorder
notation conveniently without changing its semantics.

We also represent quantum states as density density operators. A matrix ρ ∈ Herm(Cd) is
a density operator if ρ ≽ 0 and Tr(ρ) = 1. The density operator of a pure state |ψ⟩ ∈ Cd, is
ρ = |ψ⟩⟨ψ|. A density operator of rank > 1 is a mixed state. It essentially describes a distribution
over pure states.
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Measurement. A matrix Π is a projector if Π2 = Π (i.e., Π has only eigenvalues 0 and 1).
A projective measurement is described by a set of projectors {Πi}mi=1 such that

∑m
i=1 Πi = I.

Measurement in the standard basis is given by {|i⟩⟨i|}. The probability of obtaining outcome i
when measuring state ρ is given by Tr(Πiρ). The state after measuring outcome i is given by
ρ′ = ΠiρΠi/Tr(Πiρ).

A more general notion of measurement is the POVM formalism (Positive Operator-Valued
Measure). A POVM is defined by a set of operators {Ei}mi=1 with Ei ≽ 0 and

∑m
i=1Ei = I. The

probability of observing outcome i is still given by Tr(Eiρ). POVMs can be simulated by projective
measurements in a larger space [43].

Norms. For vectors v ∈ Cd, we define the p-norm for p ≥ 1

∥v∥p :=
(

d∑
i=1

|vi|p
)1/p

.

We call ∥·∥2 also the Euclidean norm.

Lemma 2.5 ([28, Equation 2.2.5]). For all v ∈ Cd,

∥v∥2 ≤ ∥v∥1 ≤
√
d∥v∥2.

Lemma 2.6 ([22]). For all |ψ⟩, |ϕ⟩ ∈ Cd,

∥|ψ⟩ − |ϕ⟩∥2 =
√
2− 2Re(⟨ϕ|ψ⟩).

Proof.

∥|ψ⟩ − |ϕ⟩∥2 =
√
(⟨ϕ| − ⟨ϕ|)(|ψ⟩ − ⟨ϕ|)

=
√
⟨ψ|ψ⟩ − ⟨ψ|ϕ⟩ − ⟨ϕ|ψ⟩+ ⟨ϕ|ϕ⟩

=
√
2− 2Re(⟨ψ|ϕ⟩)

For operators M ∈ L(Cd), we define the corresponding operator norm, usually called the spectral
norm, as

∥M∥∞ := max
v∈Cd

∥Mv∥2
∥v∥2

.

It holds that ∥M∥∞ =
√
λmax(M†M). For M ≽ 0, we have ∥M∥∞ = λmax(M), where λmax(M)

denotes the largest eigenvalue of M . We write M = O(f(d)) if ∥M∥∞ = O(f(d)) for some function
f .

The Frobenius norm is defined as

∥M∥F :=

√√√√ d∑
i=1

d∑
j=1

|mij |2,

where mij denote the entries of M . Note that the Frobenius norm is the same as the Euclidean
norm of M viewed as a d2-dimensional vector.
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Lemma 2.7 ([28, Equation 2.3.7]).

∥M∥∞ ≤ ∥M∥F ≤
√
d∥M∥∞

We define the trace norm for operators M ∈ L(Cd) as

∥M∥tr := Tr(|M |) = Tr
√
M†M,

where |·| and
√· are applied as operator functions.

Lemma 2.8 ([22]). Let |ψ⟩, |ϕ⟩ ∈ Cd. Then,

∥|ψ⟩⟨ψ| − |ϕ⟩⟨ϕ|∥tr = 2
√
1− |⟨ψ|ϕ⟩|2. (2.1)

Proof. Let M = |ψ⟩⟨ψ|−|ϕ⟩⟨ϕ|. M has rank ≤ 2 and Tr(M) = 0. Hence, M = λ|λ1⟩⟨λ1|−λ|λ2⟩⟨λ2|
for some λ ≥ 0. Therefore, 2λ2 = Tr(M2) = 2− 2|⟨ψ|ϕ⟩|2. Thus, λ =

√
1− |⟨ψ|ϕ⟩|2. (2.1) follows

due to ∥M∥tr = 2λ.

2.2 Complexity Classes

Due to the inherently probabilistic nature of quantum computation, the quantum complexity
classes we are interested in are defined in terms of promise problems. A promise problem Π is
defined by a tuple Π = (Πyes,Πno,Πinv) with Πyes ∪· Πno ∪· Πinv = {0, 1}∗. We call x ∈ Πyes a
yes-instance, x ∈ Πno a no-instance, and x ∈ Πinv an invalid instance. Having invalid instances is
what distinguishes promise problems from languages.

2.2.1 Quantum Complexity Classes

The complexity class BQP can be considered as the “quantum analouge” of P. The circuits used by
BQP and other quantum complexity classes belong to polynomial-time uniform quantum circuit
families {Qn}. That means, there exists a Turing machine that on input n outputs a classical
description of a quantum circuit Qn in time poly(n).

Definition 2.9 (BQP). Fix a polynomial q(n). A promise problem Π is in BQP (Bounded-Error
Quantum Polynomial-Time) if there exists a polynomial-time uniform quantum circuit family {Qn},
such that the following holds:

• For all n, Qn ∈ U
(
B⊗nA ⊗ B⊗q(n)

C

)
. The register A is used for the input and C contains

ancillae initialized to |0⟩.
• ∀x ∈ Πyes : Pr[Q|x| accepts |x⟩] ≥ 2/3

• ∀x ∈ Πno : Pr[Q|x| accepts |x⟩] ≤ 1/3

To check if a circuit Qn accepts the input, we measure the first qubit of register C in standard
basis. If it is |1⟩, we say the circuit accepts the input. For x ∈ {0, 1}n, the probability that Qn
accepts x is given by

Pr[Qn accepts |x⟩] = ∥
(
IA ⊗ |1⟩⟨1|C1

⊗ IC2...q(n)

)
Qn|x⟩A|0⟩C∥22.

If BQP is the quantum analogue of P, then what is the quantum analogue of NP? The arguably
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most natural analogue is QMA, where a BQP-verifier is given an additional quantum proof. As the
name suggests, QMA can also be seen as a quantum analogue of MA.

Definition 2.10 (QMA). Fix polynomials p(n) and q(n). A promise problem Π is in QMA

(Quantum Merlin Arthur) if there exists a polynomial-time uniform quantum circuit family {Qn}
such that the following holds:

• For all n, Qn ∈ U
(
B⊗nA ⊗ B⊗p(n)B ⊗ B⊗q(n)

C

)
. The register A is used for the input, B contains

the proof, and C the ancillae initialized to |0⟩.
• ∀x ∈ Πyes ∃|ψ⟩ ∈ B⊗p(|x|) : Pr[Q|x| accepts |x⟩|ψ⟩] ≥ 2/3

• ∀x ∈ Πno ∀|ψ⟩ ∈ B⊗p(|x|) : Pr[Q|x| accepts |x⟩|ψ⟩] ≤ 1/3

If we modify QMA to require a classical proof |y⟩ instead of |ψ⟩, we get the complexity class
QCMA.

Note that the thresholds c = 2/3 and and s = 1/3 may be replaced with c = 1− ε and s = ε

such that ε ≥ 2− poly(n) [43]. We also refer to c as completeness, s as soundness, and c− s as the
promise gap.

If we modify QMA to receive k unentangled proofs (i.e., |ψ⟩ =⊗k
j=1|ψj⟩), we get the complexity

class QMA(k). It holds that QMA(2) = QMA(poly(n)) as shown by Harrow and Montanaro [33].
Therefore, probability amplification is possible.

In this thesis, we examine some complexity classes where a Turing machine is given access to an
oracle for another complexity class.

Definition 2.11 (PC). Let C be a complexity class with complete problem Π. PC = PΠ is the
class of (promise) problems that can be decided by a polynomial-time deterministic Turing machine
M with the ability to query an oracle for Π. If M asks an invalid query x ∈ Πinv, the oracle may
respond arbitrarily.

We say Γ ∈ PC if there exists an M as above such that M accepts/rejects for x ∈ Γyes/x ∈ Γno,
regardless of how invalid queries are answered.

For a function f , we define PC[f ] in the same way, but with the restriction that M may ask at
most O(f(n)) queries on input of length n.

For an integer k, we define PC[k], where M may ask at most k queries on each input.
P∥C denotes the class where M must ask all queries at the same time. We call these queries

non-adaptive opposed to the adaptive queries of the above classes, because the queries do not
depend on the results of other queries.

For a function f : {0, 1}∗ → {0, 1}∗, we define Pf and the other classes analogously, except that
M may now query the oracle for values f(x).

The PQMA[log]-complete problem is APX-SIM. It essentially asks whether a given Hamiltonian
has a ground state with a certain property (e.g., a ground state where the first qubit is set to |1⟩).

Definition 2.12 (APX-SIM [4]). Fix a polynomial p(n). The promise problem APX-SIM (Ap-
proximate Simulation) is defined as follows.

Input:
• A k-local Hamiltonian H ∈ Herm (B⊗n) (see Definition 2.28).
• A k-local observable A ∈ Herm (B⊗n).
• Efficiently computable threshold functions α, β, δ : N → R satisfying the promise gap
β(n)− α(n) ≥ 1/p(n) and δ(n) ≥ 1/p(n) for all n ≥ 1.

Output:
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YES: H has a ground state |ψ⟩ satisfying ⟨ψ|A|ψ⟩ ≤ α(n).
NO: For all |ψ⟩ ∈ B⊗n with ⟨ψ|H|ψ⟩ ≤ λmin(H) + δ, it holds that ⟨ψ|A|ψ⟩ ≥ β(n).

Ambainis shows completeness for k = Θ(log n) [4]. Gharibian and Yirka [26] improve this
to k = 5 by using an approach similar to Section 2.3.2.4 and observables that measure only a
single qubit. Gharibian, Piddock, and Yirka [24] improved this to k = 2 for physically motivated
Hamiltonian models.

Definition 2.13 (StoqMA [12]). Fix polynomials α(n), β(n), p(n), q(n), r(n) with α(n)− β(n) ≥
1/ poly(n). A promise problem Π is in StoqMA (Stoquastic Merlin Arthur) if there exists a
polynomial-time uniform quantum circuit family {Qn} such that the following holds:

• For all n, Qn ∈ U
(
B⊗nA ⊗ B⊗p(n)B ⊗ B⊗q(n)C ⊗ B⊗r(n)D

)
. The register A is used for the input,

B contains the proof, C ancillae initialized to |0⟩, and D ancillae initialized to |+⟩. Qn only
uses X, CNOT, and Toffoli gates.

• For x ∈ {0, 1}∗, |x| = n, |ψ⟩ ∈ B⊗p(n), let |ψin⟩ := |x⟩A|ψ⟩B |0⟩⊗q(n)C |+⟩⊗r(n)D . The acceptance
probability is then given by

Pr[Qn accepts |x⟩|ψ⟩] = ⟨ψin|Q†
nΠaccQn|ψin⟩,

where Πacc = |+⟩⟨+|C1
measures the first ancilla in the {|+⟩, |−⟩} basis.

• ∀x ∈ Πyes ∃|ψ⟩ ∈ B⊗p(|x|) : Pr[Q|x| accepts |x⟩|ψ⟩] ≥ α(n)
• ∀x ∈ Πno ∀|ψ⟩ ∈ B⊗p(|x|) : Pr[Q|x| accepts |x⟩|ψ⟩] ≤ β(n)

Note that the only difference between StoqMA and MA is that StoqMA may perform its final
measurement in the {|+⟩, |−⟩} basis (i.e., setting Πacc = |0⟩⟨0|C1

would result in MA) [12].
It further holds that the StoqMA verifier accepts any state with only nonnegative coordinates

with probability ≥ 1/2. Therefore, we cannot amplify the gap by majority voting as for MA.
Recently, Aharonov, Grilo, and Liu [3] have shown that StoqMA with α(n) = 1 − negl(n) and
β(n) = 1− 1/ poly(n) is contained in MA, where negl(n) denotes a function smaller than all inverse
polynomials for sufficiently large n. It is therefore unlikely that such an amplification is possible.

2.2.2 Counting Complexity Classes

Next, we introduce some definitions needed for studying the upper bounds of QMA.

Definition 2.14 (FP). FP is the class of functions f : {0, 1}∗ → Z that can be computed by a
polynomial-time Turing machine.

Let M be a polynomial-time nondeterministic Turing machine with two halting states: accept
(1) and reject (0). We call such a Turing machine a counting machine (CM). We denote the number
of accepting computation paths on input x by #M(x).

Definition 2.15 (#P [60]). #P = {#M |M is a CM}.

Definition 2.16 (GapP [20]). Denote by M the CM that acts like M but accepts whenever M
rejects and rejects whenever M accepts. We define the function

gapM : {0, 1}∗ → Z, x 7→ #M(x)−#M(x).
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The class of these functions is

GapP = {gapM |M is a CM.}

GapP can also equivalently defined as the closure of #P under subtraction (i.e., GapP = #P−#P,
where the minus sign denotes elementwise subtraction).

Definition 2.17 (PP [27]). A language L is in PP (probabilistic polynomial time) if there exists a
function g ∈ GapP such that L = {x | g(x) ≥ 0}.

Definition 2.18 (A0PP [61]). A promise problem Π is in A0PP (one-sided analogue of AWPP) if
there exist functions t ∈ FP and g ∈ GapP (closure of #P under subtraction) such that

• ∀x ∈ Πyes : g(x) > t(x),
• ∀x ∈ Πno : 0 ≤ g(x) ≤ 1

2 t(x).

A0PP was introduced by Vyalyi [61] to show that QMA = PP implies PH ⊆ PP. The
completeness/soundness parameters can be amplified and we can assume that the threshold function
t only depends on the length of x.

Lemma 2.19 ([61]). Fix a polynomial q(n). Let Π ∈ A0PP. There exists g ∈ GapP and a
polynomial p(n), such that

• ∀x ∈ Πyes : g(x) > 2p(|x|),
• ∀x ∈ Πno : 0 ≤ g(x) ≤ 2−q(|x|)2p(|x|).

Kuperberg [47] showed that SBQP = A0PP.

Definition 2.20 (SBQP [47]). A promise problem Π is in SBQP (Small Bounded-Error Quantum
Polynomial-Time) if there exists a polynomial-time uniform quantum circuit family {Qn} and a
polynomial p such that

• ∀x ∈ Πyes : Pr[Q|x| accepts |x⟩] ≥ 2−p(n),
• ∀x ∈ Πno : Pr[Q|x| accepts |x⟩] ≤ 2−p(n)−1.

We observe that both A0PP and SBQP are in some sense “one-sided” as the range of possible
function values or acceptance probabilities in the yes-case is quite large while it is rather close to 0

in the no-case. The promise gap can be exponentially small.
A0PP contains the complexity class C=P [64], which in turn contains SPP [20].

Definition 2.21 (C=P [27]). A language L is in C=P (Exact-Counting Polynomial-Time) if there
exists function g ∈ GapP such that L = {x | g(x) = 0}.

Definition 2.22 (SPP [20]). A promise problem Π is in SPP (Stoic PP) if there exists a function
g ∈ GapP such that

• ∀x ∈ Πyes : g(x) = 1,
• ∀x ∈ Πno : g(x) = 0.

2.2.3 Polynomial-Time Hierarchy

Definition 2.23 (PH (Polynomial-Time Hierarchy) [57]). Define

∆P
0 = ΣP

0 = ΠP
0 = P,
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and for i ≥ 0

ΣP
i+1 = NPΣP

i

ΠP
i+1 = coNPΣP

i

∆P
i+1 = PΣP

i .

Let PH =
⋃
iΣ

P
i .

For example ΣP
1 = NP, ΠP

1 = coNP, and ∆P
2 = PNP. Toda’s famous theorem states that a single

query to a #P oracle is sufficient to decide PH.

Theorem 2.24 (Toda [59]). PH ⊆ P#P[1].

2.2.4 Probabilistically Checkable Proofs

Definition 2.25 (PCP[r(n), q(n)] [6]). A language L is in PCP[r(n), q(n)] if there exists verifier
Turing machine M that behaves as follows:

1. M receives input x, a proof y ∈ {0, 1}∗ and a random string z ∈ {0, 1}r(n) on separate tapes.
2. M computes indices i1, . . . , iq(n) without accessing y (it may access z) in polynomial time.
3. M copies proof bits yi1 , . . . , yiq(n)

to its work tape.
4. M accepts or rejects in polynomial time without accessing y.

M must also satisfy the following conditions for all x ∈ {0, 1}n:
• If x ∈ L, ∃y : Prz[M(x, y, z) = 1] = 1, where z ∈ {0, 1}r(n) is chosen uniformly at random.
• If x /∈ L, ∀y : Prz[M(x, y, z) = 1] ≤ 1/2.

Theorem 2.26 (PCP Theorem [5]). NP = PCP[O(log(n)), O(1)].

Theorem 2.27 ([7]). NEXP = PCP[O(poly(n)), O(poly(n))].

2.3 The Local Hamiltonian Problem

In complexity theory, we are often interested in complete problems for complexity classes. For
example, 3-SAT is NP-complete. The local Hamiltonian problem, which we discuss in this section,
can be considered its quantum analogue. It is in fact quite straightforward to map any 3-SAT

instance to a local Hamiltonian.

Definition 2.28 (k-local Hamiltonian). A Hermitian operator H ∈ Herm (B⊗n) acting on n qubits
is a k-local Hamiltonian if it can be written as

H =
∑
S⊆[n]

|S|≤k

HS ⊗ I[n]\S .

Additionally, 0 ≼ HS ≼ I must hold for all S.
We refer to the minimum eigenvalue λmin (H) as the ground state energy of H and the corre-

sponding eigenvectors as ground states.

Definition 2.29 (k-LH). Fix a polynomial p(n). The promise problem k-LH (k-local Hamiltonian
problem) is defined as follows.

17



Input:
• A k-local Hamiltonian H ∈ Herm (B⊗n).
• Efficiently computable threshold functions α, β : N → R satisfying the promise gap
β(n)− α(n) ≥ 1/p(n) for all n ≥ 1.

Output:
YES: λmin (H) ≤ α(n)
NO: λmin (H) ≥ β(n)

As a warm up, we sketch how to transform a 3-SAT instance into a k-LH instance. Consider
the clause c = (x̄1 ∨ x2). The corresponding 2-local Hamiltonian is simply

Hc =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 .

Clearly, λmin (Hc) = 0 with ground states |00⟩, |01⟩, |11⟩, corresponding to the satisfying assignments
of the clause.

In general, Hc is the diagonal matrix that has a 0 at the entries corresponding to satisfying
assignments of c and a 1 for unsatisfying assignments. Therefore, all satisfying assignments will be
in the nullspace. The Hamiltonian for a conjunction Φ =

∧
j cj is then HΦ =

∑
j Hcj . It can be

shown that λmin (HΦ) is equal to the minimum number of unsatisfied clauses.
In the following, we prove that k-LH is indeed QMA-complete. We state the proof entirely since

we reuse it in parts for our own proofs. The proof taken from Kitaev [43] with some modifications
from [22], and adapted slightly.

Theorem 2.30. k-LH is QMA-complete for k ≥ 5.

Remark. Kempe and Regev improved this to k ≥ 3 [40]. Kempe, Kitaev, and Regev subsequently
improved this to k ≥ 2 [39]. For k = 1, the problem is in P.

2.3.1 k-LH ∈ QMA

We begin by showing that k-LH is indeed contained in QMA.

Lemma 2.31. k-LH ∈ QMA for k = O(log n).

Proof. Let H ∈ Herm (B⊗n) be a k-LH instance with thresholds α, β. We construct a QMA-verifier
from H.

The general idea is to use the proof |ψ⟩ given to the verifier as potential ground state of H and
check if its energy exceeds α. Thus, we need to check if

⟨ψ|H|ψ⟩ ≤ α(n).

To measure ⟨ψ|H|ψ⟩, we make use of the fact that H is k-local and can therefore be written as a
H =

∑m
j=1Hj . Hence,

⟨ψ|H|ψ⟩ =
m∑
j=1

⟨ψ|Hj |ψ⟩.
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This allows us to compute a value with expectation ⟨ψ|H|ψ⟩ by performing the following random
experiment:

1. Select R ∈ [m] uniformly at random.
2. Measure |ψ⟩ using the measurement described by the POVM {I −HR, HR} corresponding to

results {0, 1} and output the result.
The given POVM is valid since by definition 0 ≼ HR ≼ I. It can be implemented with a polynomially
sized circuit because HR only acts on k = O(log n) qubits [43].

Let X be the random variable corresponding to the output of the experiment. After choosing
R, we have in step 2 that

Pr[X = 1 | R = r] = ⟨ψ|Hr|ψ⟩.

It therefore holds that

E[X] = Pr[X = 1]

=

m∑
r=1

Pr[R = r] Pr[X = 1 | R = r]

=

m∑
r=1

1

m
⟨ψ|Hr|ψ⟩

=
1

m
⟨ψ|H|ψ⟩.

We define a verifier V that runs the above random experiment and accepts if X = 0. Hence,

Pr[V accepts |ψ⟩] = 1− 1

m
⟨ψ|H|ψ⟩.

It follows that V is a valid QMA verifier with a promise gap of at least (mp(n))−1, where β(n)−
α(n) ≥ p(n).

2.3.2 k-LH is QMA-hard

This direction of the proof is significantly more involved than the previous one. The basic idea is
similar to the proof of the well known Cook-Levin Theorem [16, 48]. We construct a Hamiltonian in
such a way, that the ground state is a superposition of all intermediate states in the computation.

Consider a promise problem Π ∈ QMA and some instance x. Let V = Vℓ · · ·V1 be the verifier
for instances of length |x|. V acts on the space

B⊗nA ⊗ B⊗p(n)
B ⊗ B⊗q(n)C ,

where p and q are polynomials and registers A, B, and C correspond to input string x, proof |ψ⟩
and ancillae (initialized to |0⟩), respectively. Define

P (ψ, x) := (⟨x|A⟨ψ|B⟨0|C)U†ΠaccU (|x⟩A|ψ⟩B |0⟩C),

where Πacc denotes the projector onto the subspace where the qubit C1 (i.e., the first qubit of
register C) is set to |1⟩. By the definition of QMA, the following holds for an arbitrary inverse
polynomial ε, which we choose later:

• If x ∈ Πyes (i.e., x is a yes-instance), ∃|ψ⟩ ∈ B⊗m : P (ψ, x) ≥ 1− ε.
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• If x ∈ Πno, (i.e., x is a no-instance), ∀|ψ⟩ ∈ B⊗m : P (ψ, x) ≤ ε.

2.3.2.1 Hamiltonian Construction

We can imagine applying V to some quantum state as applying the gates V1, . . . , Vℓ one by one.
This gives us intermediate states

|ψt⟩ := Vt · · ·V1|x⟩A|ψ⟩B |0⟩C .

Our goal now is to construct a Hamiltonian H whose ground state is a superposition of the
intermediate states. H acts on the space

L := B⊗(n+p(n)+q(n))
ABC ⊗ Cℓ+1

D ,

where Cℓ+1 corresponds to a clock register D. The desired low energy state is then the history state

|η⟩ = 1√
ℓ+ 1

ℓ∑
t=0

Vt · · ·V1|x⟩A|ψ⟩B |0⟩C ⊗ |t⟩D ∈ L, (2.2)

for some |ψ⟩ that maximizes P (ψ, x).
Now that we have laid out what the construction of H seeks to achieve, we give its actual

definition. H consists of three summands

H = Hin +Hprop +Hout,

“penalizing” vectors diverging from the history state structure.
Hin models the condition that the state at timestep 0 has the correct format |x⟩A|ψ⟩B |0⟩C |0⟩D

for some |ψ⟩.1 Let Π
(b)
j be the projector onto the subspace where the j-th qubit equals b.

Hin =

 n∑
j=1

(
Π

(xj)
j

)
A
⊗ IBC +

q(n)∑
j=1

IAB ⊗
(
Π

(0)
j

)
C

⊗ |0⟩⟨0|D.
Note that Hin is not 5-local but rather O(log ℓ)-local. We will address that in Section 2.3.2.4.

Hout penalizes states |η⟩, where the last timestep has a large overlap with |0⟩ on the first qubit
of C. Let Πrej = I −Πacc,

Hout = Πrej ⊗ |ℓ⟩⟨ℓ|D.

If |η⟩ has the structure from (2.2), it holds that

⟨η|Hout|η⟩ =
1− P (ψ, x)

ℓ+ 1
. (2.3)

Hprop enforces a correct propagation of the initial state to the final state. Specifically, timestep
1Kitaev’s construction does not use an input register. Instead, x is assumed to be “hardcoded” into the circuit.

This construction is taken from [22]
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t should result from timestep t− 1 by applying Vt.

Hprop =

ℓ∑
t=1

Ht

Ht = −Vt ⊗ |t⟩⟨t− 1|D − V †
t ⊗ |t− 1⟩⟨t|D + I ⊗ (|t⟩⟨t|+ |t− 1⟩⟨t− 1|)D

2.3.2.2 Completeness

To prove completeness, we must show that λmin(H) is below a certain threshold α if x ∈ Πyes.

Lemma 2.32. If x ∈ Πyes, then
λmin(H) ≤ ε

ℓ+ 1
=: α.

Proof. Let |η⟩ be as in (2.2). It is easy to show that |η⟩ is in the nullspace of Hin and Hprop. Since
x ∈ Πyes, we can choose |ψ⟩ such that P (ψ, x) ≥ 1− ε. The lemma then follows from (2.3).

2.3.2.3 Soundness

To prove soundness, we must show that λmin(H) ≥ β for x ∈ Πno.

Lemma 2.33. If x ∈ Πno, then

λmin(H) ≥ c(1−√ε)ℓ−3 =: β

for some constant c > 0.

Note that β − α ≥ 1/poly holds if we choose ε = O(ℓ−2). It will be helpful to consider H in a
different basis to prove the lemma. Specifically, we apply

W =

ℓ∑
t=0

V †
1 · · ·V †

t ⊗ |t⟩⟨t|D

as change of basis operator. The change of basis transforms |η⟩ into |η̃⟩ := W |η⟩ and H into its
conjugate H̃ =WHW †.

We now analyze how the conjugation acts on each term of H. It has no effect on Hin:

H̃in =WHinW
† = Hin

On Hout, it conjugates Πrej by V †:

H̃out =WHoutW
† =

(
V †ΠrejV

)
ABC

⊗ |ℓ⟩⟨ℓ|D

For Hprop, we analyze each Hj term separately. Recall that Ht consists of three summands, the

21



first of which has the following conjugation:

W (Vt ⊗ |t⟩⟨t− 1|)W †

=

ℓ∑
r=0

ℓ∑
s=0

(
V †
1 · · ·V †

r ⊗ |r⟩⟨r|
)
(Vt ⊗ |t⟩⟨t− 1|) (Vs · · ·V1 ⊗ |s⟩⟨s|)

=
(
V †
1 · · ·V †

t · Vt · Vt−1 · · ·V1
)
⊗ (|t⟩⟨t| · |t⟩⟨t− 1| · |t− 1⟩⟨t− 1|)

= I ⊗ |t⟩⟨t− 1|

The other two terms are conjugated analogously and we have

H̃t =WHtW
†

= IABC ⊗
(
|t− 1⟩⟨t− 1| − |t− 1⟩⟨t| − |t⟩⟨t− 1|+ |t⟩⟨t|

)
D

=: IABC ⊗ (Ej)D,

and consequently
H̃prop :=WHpropW

† = IABC ⊗ ED,

where

E =

ℓ∑
t=1

Et =



1 −1 0 0 0 · · ·
−1 2 −1 0 0 · · ·
0 −1 2 −1 0 · · ·
0 0 −1 2 −1 · · ·

0 0 0 −1 . . . . . .
...

...
...

...
. . . . . .


E is now an almost diagonal matrix and resembles the transition matrix of a 1D random walk. It
can be shown [43] that E has eigenvectors and eigenvalues

|λk⟩ = αk

ℓ∑
t=0

cos

(
qk

(
t+

1

2

))
|t⟩,

λk = 2(1− cos qk), (2.4)

qk =
πk

ℓ+ 1
.

Note that λmin(H) = λmin(H̃) while the latter has a much simpler structure. Unfortunately, not
all three summands H̃in, H̃out, H̃prop commute pairwise, which makes the eigenvalue analysis difficult.
At least H̃in and H̃out commute. Therefore, we partition H̃ = A1 +A2 with A1 = H̃in + H̃out and
A2 = H̃prop. Let L1 and L2 be their respective nullspaces (i.e., Li = Null(Ai)). We will later show
that L1 ∩ L2 = 0. Therefore, H̃ ≻ 0. By obtaining bounds for the nonzero eigenvalues of A1 and
A2, we can use the below lemma to give a lower bound for λmin(H̃). The lemma requires the angle
∠(L1,L2) between the two nullspaces:

∠(L1,L2) := cos−1 max
|η1⟩∈L1

|η2⟩∈L2

|⟨η1|η2⟩|

Lemma 2.34 ([43]). Let A1, A2 be nonnegative operators with nullspaces L1,L2 such that L1∩L2 =
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0. Let v be a lower bound on the smallest nonzero eigenvalue of A1 and A2. Then

λmin(A1 +A2) ≥ 2v sin2
∠(L1,L2)

2
.

To apply the lemma, we need to determine a suitable lower bound v. A1 has only nonnegative
integer eigenvalues since it is the sum of pairwise commuting projectors.

A2 clearly has the same eigenvalues as E whose smallest positive eigenvalue is λ1 as defined in
(2.4).

λ1 = 2

(
1− cos

π

ℓ+ 1

)
≥ c′ℓ−2 =: v, (2.5)

where c′ is some positive constant and the inequality follows from the Taylor expansion of cosx− 1.
Next, we provide a lower bound for the angle sin2 θ with θ = ∠(L1,L2).

Lemma 2.35 ([22, 43]).

sin2 θ ≥ 1−√ε
ℓ+ 1

Proof. We simplify this calculation by computing an upper bound for

cos2 θ = max
|η1⟩∈L1

|η2⟩∈L2

|⟨η1|η2⟩|2 = max
|η2⟩∈L2

⟨η2|ΠL1 |η2⟩, (2.6)

where ΠL2
denotes the projector onto L2.

It can easily be shown that

L1 = K1 ⊕K2 ⊕K3,

K1 = |x⟩A ⊗ B⊗p(n)B ⊗ |0⟩C ⊗ |0⟩D,
K2 = B⊗(n+p(n)+q(n))

ABC ⊗ Span (|1⟩, . . . , |ℓ− 1⟩)D ,

K3 = V †
(
|1⟩C1

⊗ B⊗(n+p(n)+q(n)−1)
)
ABC

⊗ |ℓ⟩D,

where ⊕ denotes the direct sum of vector spaces (i.e., the sum of orthogonal vector spaces) and

L2 := B⊗(n+p(n)+q(n)) ⊗ |γ⟩,

|γ⟩ := |λ0⟩ =
1√
ℓ+ 1

ℓ∑
t=0

|t⟩.

Note that we slightly abuse notation here by using |x⟩ to represent the span of the vector |x⟩. Since
L1 is the direct sum of K1,K2,K3, it holds that

ΠL1
= ΠK1

+ΠK2
+ΠK3

.

Let |η2⟩ ∈ L2. We analyze the terms ⟨η2|ΠKj
|η2⟩ separately.

It can easily be shown that

⟨η2|ΠK1
|η2⟩ ≤

ℓ− 1

ℓ+ 1
.
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Since |η2⟩ ∈ L2, we can write |η2⟩ = |β⟩ABC ⊗ |γ⟩D. It follows that

⟨η2| (ΠK1 +ΠK3) |η2⟩ ≤
1

ℓ+ 1
⟨β| (ΠX +ΠY) |β⟩

≤ 1 + cosα

ℓ+ 1
,

where X = |x⟩A ⊗ B⊗p(n)B ⊗ |0⟩C , Y = V † (|1⟩C1
⊗ B⊗(n+p(n)+q(n)−1)

)
ABC

and α = ∠(X ,Y). The
second inequality follows from the (omitted) proof of Lemma 2.34.

We can interpret X as the space of valid initial states and Y as the space of states that V
accepts perfectly. Recalling (2.6), it follows that cos2 α ≤ ε since x ∈ Πno.

Thus, we have

⟨η2|ΠL1
|η2⟩ ≤

ℓ− 1

ℓ+ 1
+

1 +
√
ε

ℓ+ 1
= 1− 1−√ε

ℓ+ 1
.

The lemma follows due to sin2 θ = 1− cos2 θ.

Lemma 2.33 is now easily proven by applying Lemma 2.34 to the bounds from Lemma 2.35 and
(2.5).

2.3.2.4 Locality

Our above proofs for completeness and soundness imply QMA-hardness of k-LH for k = Ω(log n)

since the clock requires Θ(log n) qubits. We need to modify our construction to make it 5-local. To
that end, we choose to represent the clock in “unary”. This means that the clock value is represented
by the number of leading 1’s in the bitstring. Concretely, we embed the clock register Cℓ+1 in the
larger space B⊗ℓ using the embedding

f : Cℓ+1 → B⊗ℓ, |t⟩ 7→ |1t0ℓ−t⟩.

Assuming the time register follows this embedding, to check timestep t, we only need to check that
qubit t is set to |1⟩ and t+ 1 is set to |0⟩.

Therefore, we replace the operators on the D register in the definition of H (see Section 2.3.2.1)
with the following 3-local operators:

|0⟩⟨0| → Π
(0)
1 , |0⟩⟨1| → (|0⟩⟨1|)1Π(0)

2

|t⟩⟨t| → Π
(1)
t Π

(0)
t+1, |t− 1⟩⟨t| → Π

(1)
t−1(|0⟩⟨1|)tΠ

(0)
t+1

|ℓ⟩⟨ℓ| → Π
(1)
ℓ , |ℓ− 1⟩⟨ℓ| → Π

(1)
ℓ−1(|0⟩⟨1|)ℓ

Note that (|0⟩⟨1|)t denotes the operator that acts as |0⟩⟨1| on qubit t and identity on the remaining
qubits.

By performing these replacements on H, we obtain a new Hamiltonian Hext ∈ Herm(Lext),
where Lext = Bn+p(n)+q(n)ABC ⊗ BℓD is the space obtained from L by replacing the D register with Bℓ.
Using the previously defined embedding, we can say L ⊆ Lext. Hext maps L to itself and acts on L
in the same way as H. That means

∀|ψ⟩ ∈ L : Hextf(|ψ⟩) = f(H|ψ⟩). (2.7)
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It remains the problem that Hext only “works correctly” on L. Vectors with incorrectly formatted
clock (e.g., |0ℓ−11⟩) are in the nullspace of Hext. Therefore, we introduce a new Hamiltonian term
to penalize incorrectly formatted clock registers (i.e., 01 occurs in the bitstring).

Hstab = IABC ⊗
ℓ−1∑
t=1

Π
(0)
t Π

(1)
t+1

We now use H ′ := Hext +Hstab. Since Null(Hstab) = L, the completeness proof Lemma 2.32 for H
still works for H ′.

To show soundness, we need to argue that λmin(H
′) ≥ c(1−√ε)ℓ−3. Since H ′ and Hext map L to

itself, we can analyze its smallest eigenvalue in L and its orthogonal complement L⊥ independently.
On L, we may apply Lemma 2.33 due to (2.7), which implies

λmin(Hext) ≥ c(1−
√
ε)ℓ−3.

λmin(Hstab) = 0 on L since L = Null(Hstab).
On L⊥ it holds that λmin(Hext) = 0 and λmin(Hstab) ≥ 1. The latter inequality follows from the

fact that Hstab only has nonnegative integer eigenvalues since it is the sum of commuting projectors.
The proof of Theorem 2.30 is now complete.

25



Chapter 3

PQMA with Tree-like Dependencies

Suppose we have a polynomial-time Turing machine with oracle access to QMA. Each query the
Turing machine asks the oracle can depend on previous queries. We can model this as a DAG
whose nodes represent queries and edges dependencies. If node v has an incoming edge from u,
then v’s query depends on u’s. How does the complexity change if we restrict the DAG to trees?
We call the resulting complexity class TREES(QMA) (formally defined in Definition 3.19). It turns
out that TREES(QMA) = PQMA[log], which we prove in this chapter.

This result is essentially a quantum analogue of Gottlob’s [31] analogous result for NP. We build
upon his proof to prove our result. Therefore, we present Gottlob’s proof for PNP[log] = TREES(NP)

in Section 3.1.
We will give two proofs TREES(QMA) = PQMA[log]. The first reduces TREES(QMA) to

APX-SIM by constructing a query Hamiltonian (similar to Ambainis’ proof for APX-SIM being
PQMA[log]-complete [4]; see Section 3.3). The second proof uses a total solution weight function
(similar to (3.5); see Section 3.4). Afterwards, we generalize the result to MA, QCMA, and QMA(2)

(see Section 3.5).
Finally, we investigate whether we can go beyond tree-like dependencies. For PNP, we prove that

the dependency graph having bounded tree-width leads to containment in PNP[log] (see Section 3.6).

3.1 PNP with Tree-Like Dependencies

In this section, we will show that PNP with tree-like query dependencies equals PNP[log]. We choose
to represent the problem differently from Gottlob as to make it easier to adapt to the quantum
setting. The proofs remain very similar to those given in [31].

3.1.1 Formal Definition

First, we define the language NP-DAG to model the problem where a set of queries to an NP-oracle
are described in a DAG. Each node represents a query that depends on results of the queries from
direct predecessors.

Definition 3.1 (NP-DAG). An NP-DAG instance is defined by an n-node DAG G = (V =

{v1, . . . , vn}, E). vn ∈ V is the unique node with outdeg(vn) = 0, which we denote the result
node. Each node vi ∈ V contains the description of a polynomially-sized circuit Ci with designated
input and proof register (akin to an NP-verifier). The input register’s size equals indeg(vi). Ci
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implicitly defines a language Li (Li contains the outputs of previous queries for which there exists
an accepting proof for Ci). By padding Li with 0n, we get Li ∈ NP (vi might have very few inputs
but Ci may require a proof of size poly(n)).

We say G ∈ NP-DAG if the verification procedure (see Algorithm 3.1) accepts G, which means
Verify(G) = 1.

Algorithm 3.1 Verification procedure for NP-DAG

1: function Verify(G = (V,E))
2: Sort the nodes of V topologically into v1, . . . , vn.
3: Denote by xi ∈ {0, 1} the result of vi’s query.
4: for i = 1, . . . , n do
5: zi ←⃝vj∈pred(vi) xj ▷ The concatenation order is specified by Ci.

6: xi ←
{
1, if zi ∈ Li
0, otherwise

7: return xn

We call a string x ∈ {0, 1}n that can be constructed by this procedure a correct query string.

Note that the language NP-DAG corresponds to Gottlob’s DAGS(SAT) (refer to [31] for the
formal definition). The main difference is that NP-DAG models each query as a circuit that receives
the previous results as input (imagine the edges as sending the output of one circuit to the input
of the next), whereas each node in DAGS(SAT) contains a boolean formula. These formulas are
connected with linking variables that are set to 1 iff the associated formula is satisfiable. It is easy
to see that both definitions are equivalent. The reason for the divergent definition is that we want
to replace NP with QMA, and consequently classical circuits and proofs with quantum circuits and
proofs.

Lemma 3.2. NP-DAG is PNP-complete.

Proof. NP-DAG ⊆ PNP holds because the verification procedure defined in in Definition 3.1 can
easily be executed by a Turing machine with an NP-oracle. The oracle is used to compute the xi
values. The remaining operations are trivial.

To argue PNP-hardness of NP-DAG, we describe the polynomial-time reduction from PNP to
NP-DAG. Let M be some PNP machine and x an input. Without loss of generality, we may assume
that M always performs m ≤ poly(|x|) queries. Let G be a DAG with m nodes. Node vi represents
the i-th query of M and has incoming edges from v1, . . . , vi−1. Ci is then defined as the circuit
that first computes the state of M prior to the i-th query using the results of all previous queries
and then accepts iff that query is accepted by the oracle. By construction, G ∈ NP-DAG iff M

accepts x.

By requiring G to be a tree, we obtain the complexity class TREES(NP).

Definition 3.3 (TREES(NP)). The complexity class TREES(NP) is the class of all languages
that are polynomial-time reducible to NP-DAG, such that G of the resulting NP-DAG instance is
a tree.

3.1.2 TREES(NP) = PNP[log]

We will now prove the following theorem.
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Theorem 3.4. TREES(NP) = PNP[log].

The first direction is straightforward:

Lemma 3.5. TREES(NP) ⊇ PNP[log].

Proof. Let x be an input to a PNP[log] machine M with n = |x|. Since M performs only O(log n)
oracle queries, each query can depend on at most O(log(n)) other queries. Therefore, there are
only poly(n) possibilities for each query. We construct G by having a node for each possible query
without any inputs and an output node that receives the results of all possible queries and then
simulates M . It holds that G ∈ NP-DAG iff M accepts x.

In the following, we will show the other direction, TREES(NP) ⊆ PNP[log].

3.1.2.1 Weighting Functions

We begin by introducing the concept of admissable weighting functions.

Definition 3.6. Let G = (V,E) be a DAG.
• For each v ∈ V , denote by v↑ the set of all nodes reachable from v by a directed path of

length ≥ 1.
• A weighting function for G is a function ν : V → N.
• Let c ≥ 1 be a constant. A weighting function ν is c-admissable iff

∀v ∈ V : ν(v) > c
∑
w∈v↑

ν(w). (3.1)

• The total weight Wν(G) of G under weighting function ν is defined as

Wν(G) =
∑
v∈V

ν(v).

• A weighting function ν is polynomial-time computable iff ν(v) and Wν(G) can be computed
in polynomial time for all graphs G and v ∈ V .

Note that Gottlob does not define c-admissable weighting functions. We may omit c in the
following for c = 1, which corresponds to Gottlob’s definition. We define two general families of
c-admissable weighting functions.

Definition 3.7. Let G = (V,E) be a DAG. We divide G recursively into levels. Level 0 is made
up by the nodes without incoming edges. Level i+ 1 contains nodes v that have a only inputs w
(i.e., (w, v) ∈ E) with level(w) ≤ i and at least one input w with level(w) = i. We denote the level
of a node v ∈ V by level(v). Nodes on the last level are called terminal nodes. The depth of G
(depth(G)) corresponds to the maximum level number.

Lemma 3.8. For any DAG G = (V,E), the weighting functions ρ and ω defined below are
c-admissable and polynomial-time computable.

ρ(v) = (c|V |)depth(G)−level(v)

ω(v) = (2c)|v↑|
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Proof. We begin by proving c-admissibility for ρ. Let v ∈ V . Then

c
∑
w∈v↑

ν(w) < c|V |(c|V |)depth(G)−level(v)+1

= (c|V |)depth(G)−level(v) = ρ(v).

The inequality follows from the fact that there are less than |V | summands and all w ∈ v↑ are at a
higher level than v.

To prove c-admissibility for ω, we introduce the notion of strata. Stratum 0 consists of all
terminal nodes (i.e., without outgoing edges). Stratum i consists of those nodes whose outgoing
edges all point to strata < i and at least one to a node in stratum i− 1. We show that ω satisfies
the condition (3.1) by induction on the strata. For Stratum 0, the condition holds trivially since it
only consists of terminal nodes.

Now assume (3.1) holds for all strata ≤ i. We show that it will also hold for stratum i+1. Note
that there may exist a node w ∈ suc(v) that is also reachable from another successor w′ ∈ suc(v)

(i.e., w ∈ w′↑). To exclude those successors, we define pure successors

puresuc(v) = suc(v) \ {w ∈ suc(w) | ∃w′ ∈ suc(v) : w ∈ w′↑}.

It trivially holds for all v ∈ V that

v↑ = puresuc(v) ∪·
⋃

w∈puresuc(v)

w↑. (3.2)

Since G is acyclic, v cannot have two successors that are both reachable from another and therefore
puresuc(v) ̸= ∅. We write puresuc(v) = {w1, . . . , wm} for some m ≥ 1. Let u = maxi∈[m]|wi↑|.
Due to (3.2), we have |v↑| ≥ m+ u and thus

ω(v) = (2c)|v↑| ≥ (2c)m+u = (2c)m · (2c)u ≥ 2cm · (2c)u. (3.3)

By the induction hypothesis, for all i ∈ [m]

(2c)u ≥ ω(wi) > c
∑
x∈wi↑

ω(x). (3.4)

Therefore, with (3.2) and (3.3), it follows that

∑
w∈v↑

ω(w) ≤
m∑
i=1

ω(wi) + ∑
x∈wi↑

ω(x)

 (apply (3.2))

≤
m∑
i=1

2ω(wi) (apply (3.4))

< 2m · (2c)u (apply (3.4))

≤ 1

c
ω(v), (apply (3.3))

which completes the proof for stratum i+ 1.
Both functions are trivially polynomial-time computable since their values are bounded by

2poly(|V |).
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3.1.2.2 Solving NP-DAG for Bounded Total Weight

In the following, we will show how to use binary search to solve an NP-DAG instance G with
O(logWν(G)) NP-oracle queries, where ν is an admissable polynomial-time weighting function.

For the binary search, we define the total solution weight function. Let G = (V = {v1, . . . , vn}, E)

be an NP-DAG instance. We assume without loss of generality that each circuit Ci receives a proof
yi ∈ {0, 1}m. The total solution weight is then given by

t : {0, 1}n × ({0, 1}m)
n → Z,

t(x, y1, . . . , yn) =


∑n
i=1 ν(vi)Ci(zi, yi), if ∀i ∈ [n] : xi = Ci(zi, yi)

−1, otherwise
, (3.5)

where the zi are defined as in Definition 3.1. The condition checks that all xi correspond to the
outputs of Ci. Let T := maxx,y t(x, y).

Lemma 3.9. The question whether T > s holds is in NP for any integer s.

Proof. The NP-verifier receives x, y as proof and accepts if t(x, y) > s, which can easily be computed
in polynomial time. Correctness is then obvious.

The lemma allows us to compute T in O(logWν(G)) NP-oracle queries. Next, we argue that
t(x, y) = T implies that x is a correct query string. This allows us to determine xn with an
additional NP-query (recalling that xn corresponds to the output of the result node).

Lemma 3.10. If t(x, y) = T , then x is a correct query string.

Proof. Assume there exist x, y with t(x, y) = T ≥ 0. Let xi be an incorrect entry in the query
string. xi = 1 is only possible if zi ∈ L. Since xi = Ci(zi, yi), it is not possible to have an incorrect
xi = 1. Hence, xi = 0, but zi ∈ Li. Therefore, there exists a y′i ̸= yi such that Ci(zi, y′i) = 1.

Define y′ by replacing the i-th entry in y with y′i and x′j = Cj(z
′
j , y

′
j) for j ∈ [n]. The z′i are

computed from x′ in the same way as zi is computed from x. Then,

t(x′, y′)− t(x, y) =
n∑
j=1

ν(vj)Cj(z
′
j , y

′
j)−

n∑
j=1

ν(vj)Cj(zj , yj)

= ν(vi)
(
Ci(z

′
i, y

′
i)− Ci(zi, yi)

)
+
∑
vj∈vi↑

ν(vj)
(
Ci(z

′
j , y

′
j)− Cj(zj , yj)

)
≥ ν(vi)−

∑
vj∈vi↑

ν(vj)

≥ 1.

The second equality follows from the fact that we only modified xi and yi for vi and its successors
vi↑. The last inequality follows from (3.1) since ν is admissable.

The next theorem follows immediately.

Theorem 3.11. Let G be an NP-DAG instance and ν an admissable polynomial-time weighting
function. A Turing machine can decide if G ∈ NP-DAG using ⌈logWν(G)⌉+ 1 NP-oracle queries.

Corollary 3.12. If depth(G) = O(logi n), then O(logi+1 n) queries suffice.
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Proof. We use ρ as weighting function. Then,

Wρ(G) ≤ n · ndepth(G) = nO(logi n) = 2O(logi+1 n).

Applying Theorem 3.11 concludes the proof.

3.1.2.3 Flattening the Tree

Unfortunately, Wν(G) may be exponential for any admissable weighting function, even if T is a
tree (e.g., if G is a simple path). Therefore, our goal is to “flatten” the tree such that each node in
the resulting DAG G has O(log n) successors. Then Wω(G) ≤ poly(n).

The essential operation for flattening the tree will be the notion of a hypertree. It is defined
similarly to the NP-DAG with the main difference that each node contains multiple queries and
the output of each node is determined by an additional output circuit.

Definition 3.13 (NP-HYPERTREE). An NP-HYPERTREE instance is defined by an n-node
rooted tree T = (V = {v1, . . . , vn}, E). vn is the root with outdeg(vn) = 0. Each node vi specifies:

• Descriptions of polynomial-time circuits circuits(vi) = {Ci,1, . . . Ci,mi
}. Each circuit Ci,j has

the following properties:
– Ci,j specifies a subset of hypernodes inputs(Ci,j) ⊆ pred(vi) as inputs.
– Ci,j has designated input and proof registers (akin to an NP-verifier). The input register

has size |inputs(Ci,j)|.
– Ci,j implicitly defines a language Li,j ∈ NP.

• Description of a polynomial-time output circuit output(vi) = Oi with a single input register
of size |mi| (i.e., not an NP-verifier).

The hypertree T can also be viewed as an NP-DAG instance by treating the circuits Ci,j and
Oi as individual nodes with

pred(Ci,j) = {Ok | vk ∈ inputs(Ci,j)}

and pred(Oi) = circuits(vi). We denote this graph by DAG(T ). We say T ∈ NP-HYPERTREE iff
DAG(T ) ∈ NP-DAG.

Remark. In DAG(T ), the Oi circuits are not queries and do not require a proof. Therefore,
O1, . . . , On−1 can be “inlined” into their direct successors.

Let G be an NP-DAG instance that is a tree. We can easily transform G into a hypertree T ,
such that G ∈ NP-DAG iff T ∈ NP-HYPERTREE. We do this by transforming each node vi of G
into a hypernode that contains the single circuit Ci and Oi := id.

Next, we introduce the fusion operation for hypertrees: The underlying idea is that we can
flatten the tree by computing the result of a circuit before we know all of its inputs. We select some
input of a circuit and replace the circuit with two copies, in which that input is replaced with a
constant 0 or 1. Once the input is known, we select which output to use.

Definition 3.14 (Fusion). Let T = (V,E) be a hypertree with nodes v and w such that (w, v) ∈ E
and v is a singleton hypernode (i.e., it contains a single circuit Cv). The fusion w◁v is a new
hypernode with the following properties:

• circuits(w◁v) = circuits(w)∪{C0
v , C

1
v}, where Cbv is the circuit obtained from Cv by replacing

the input from w with a constant b.
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• pred(w◁v) = pred(v) ∪ pred(w).
• output(w◁v) = Ow◁v where Ow◁v is the circuit that computes b as the output of Cw and

then returns the output of Cbv.
Let T (w◁v) denote the hypertree obtained by replacing v and w in T by w◁v.

An example of a fusion is depicted in Figure 3.1.

Lemma 3.15. T and T (w◁v) are equivalent, i.e.,

T ∈ NP-HYPERTREE ⇔ T (w◁v) ∈ NP-HYPERTREE.

Proof. Follows directly from Definition 3.14.

Figure 3.1: Example of the fusion w◁v (the triangles represent subtrees).

Using the fusion operation, we will “flatten” the hypertree. For that, we introduce the notion of
bad hypernodes. Let T = (V,E) be a hypertree, and v ∈ V with level(v) = ℓ. We say v is bad if
it has exactly one input (or direct predecessor) w on level ℓ− 1. Note that v may have multiple
inputs on levels ≤ ℓ− 2 and it cannot be a bottom hypernode (i.e., on level 0). The idea is, that if
a hypertree has no bad hypernodes, then every node has at least 2 inputs in the previous level and
depth(T ) must be logarithmic. For this, we use the Squeeze(T ) function from Algorithm 3.2.

We now argue that Squeeze behaves correctly.

Lemma 3.16. Let G be an n-node NP-DAG instance that is a tree, and T = Squeeze(G).
(1) Each v selected in Squeeze is a singleton hypernode.
(2) Squeeze(G) terminates and T is equivalent to G.
(3) T has at most n hypernodes.
(4) depth(T ) ≤ ⌈log n⌉.

Proof. (1) We argue inductively that during the execution of Squeeze(G), composite hypernodes
(i.e., with multiple circuits) are never bad. Initially, this holds because there are no composite
hypernodes. Now let v be the selected bad hypernode. Since BadHypernode returns a bad
hypernode that minimizes level(v), we know that w cannot be bad. Therefore, w is either a bottom
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Algorithm 3.2 Given NP-DAG instance G, where G is a tree, compute an equivalent hypertree
without bad hypernodes.

1: function Squeeze(G)
2: Convert G into the equivalent hypertree T = (V,E).
3: while T has a bad hypernode do
4: v ← BadHypernode(T )
5: Let w ∈ pred(v) with level(w) = level(v)− 1. ▷ w is unique
6: T ← T (w◁v) ▷ See Figure 3.1
7: return T

8: function BadHypernode(T = (V,E))
9: return bad hypernode v ∈ V that minimizes level(v).

hypernode, in which case w◁v will also be a bottom hypernode, or it has at least two inputs at
level level(w)− 1. These will become inputs of w◁v at level level(w◁v)− 1. Hence, w◁v is not a
bad hypernode. The subtree of all predecessors of w◁v does not contain any bad hypernodes and
therefore will not be modified in future iterations. Thus, w◁v will not become bad.

(2) Each iteration reduces the number number of hypernodes by 1. Therefore, Squeeze(G)

terminates and T has at most n hypernodes (3). T is equivalent to G due to Lemma 3.15.
(4) T has no bad hypernodes by construction. Therefore, every hypernode v has at least two

direct predecessors on level level(v)− 1. Since T is a tree, it hast at least 2depth(T )+1− 1 nodes.

We finally argue that each node in DAG(T ) has O(log n) successors which allows us to apply
Theorem 3.11 with ν = ω.

Lemma 3.17. Let G be an n-node NP-DAG instance that is a tree, T = Squeeze(G), and
G′ = (V ′, E′) = DAG(T ). It holds for all v ∈ V ′ that |v↑| = O(log n).

Proof. We say that a circuit C ′ in a hypertree T ′ depends on another circuit C, if there exists a
directed path from C to C ′ in DAG(T ′). We will argue inductively that during the execution of
Squeeze(G), each circuit C in T has at most 2 non-output circuits C ′ in each level that depend
on C.

Initially, this clearly holds since DAG(T ) is still a tree. Now consider a fusion w◁v as depicted
in Figure 3.1. Note that the dependent circuits are only modified for subtree β. After the fusion,
only circuits C0

v and C1
v depend on β in level(w◁v). Afterwards, the entire subtree of w◁v will not

be modified further as argued in the proof of Lemma 3.16.
Trivially, each circuit C has at most 1 output circuit in each layer that depends on C. The

lemma then follows due to depth(T ) ≤ ⌈log n⌉.

Lemma 3.17 implies the following theorem.

Theorem 3.18. TREES(NP) = DAGS(NP).

3.2 Formal Definition

Similarly to Section 3.1.1, we begin by defining the complexity class QMA-DAG as a quantum
analogue to NP-DAG. We cannot define QMA-DAG in the exact same way as NP-DAG because we
are dealing with promise problems. Therefore, the verification procedure becomes nondeterministic.
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Definition 3.19 (QMA-DAG). A QMA-DAG instance is defined by an n-node DAG G = (V =

{v1, . . . , vn}, E). vn ∈ V is the unique node with outdeg(vn) = 0, which we denote the result
node. Each node vi ∈ V contains the description of a polynomially-sized quantum circuit Qi
with designated input and proof registers of polynomial size (akin to a QMA-verifier). The input
register’s size equals indeg(vi). Qi implicitly defines a promise problem Πi (Πiyes contains the
outputs of previous queries for which there exists a proof for Qi that is accepted with probability
≥ 2/3). By padding Πi with 0n, we get Πi ∈ QMA (vi might have very few inputs but Qi may
require a proof of size poly(n)).

We say G ∈ QMA-DAGyes if the verification procedure (see Algorithm 3.3) outputs 1 determin-
istically (i.e., Verify(G) = 1), and G ∈ QMA-DAGno if it outputs 0 deterministically. We call a
string x ∈ {0, 1}n that can be constructed by this procedure a correct query string.

Algorithm 3.3 Verification procedure for QMA-DAG

1: function Verify(G = (V,E))
2: Sort the nodes of V topologically into v1, . . . , vn.
3: Denote by xi ∈ {0, 1} the result of vi’s query.
4: for i = 1, . . . , n do
5: zi ←⃝vj∈pred(vi) xj ▷ The concatenation order is specified by Ci.

6: xi ←


1, if zi ∈ Πiyes
0, if zi ∈ Πino
0 or 1 (nondeterministically), if zi ∈ Πiinv

7: return xn

Note that the correct query string is not necessarily unique anymore (compared to NP-DAG)
because the graph may contain invalid queries.

Lemma 3.20. QMA-DAG is PQMA-complete.

Proof. The proof is analogous to Lemma 3.2, since a quantum circuit can perform the required
classical computations prior to computing the result of the actual query just as well as a classical
circuit. We remark that invalid queries are no issue since PQMA[log] must by definition accept yes-
instances and reject no-instances, regardless of how invalid queries are answered (see Definition 2.11).

We define TREES(QMA) analogously to Definition 3.3. We want to prove the following Theorem
(analogue of Theorem 3.4).

Theorem 3.21. TREES(QMA) = PQMA[log].

The first direction is again straightforward.

Lemma 3.22. TREES(QMA) ⊇ PQMA[log].

Proof. Same as Lemma 3.5.

It remains to show that

Lemma 3.23. TREES(QMA) ⊆ PQMA[log].

For this we will present two proofs. The first reduces the problem to APX-SIM (see Section 3.3),
and the second constructs a total solution weight function similar to Gottlob’s proof (see Section 3.4).
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3.3 Proof with a Query Hamiltonian

The goal of this section is to prove Lemma 3.23. We will do so by reducing TREES(QMA) to
APX-SIM, which is contained in PQMA[log].

The basic idea of this proof is based on Ambainis’ query Hamiltonian construction, which is
used to prove that APX-SIM is PQMA[log]-hard [4]. We present the construction here for comparison
without proof of correctness.

3.3.1 Ambainis’ Query Hamiltonian

Let M be a PQMA[log] machine. We assume M ’s oracle queries are in the form of k-LH queries with
α = ε and β = 3ε for some ε ≥ 1/ poly(n). Without loss of generality, M always asks m = O(log n)

queries, where n is the input length. Let Hi,y1...yi−1

Yi
∈ Herm (Yi) be the Hamiltonian that M asks

if the previous i− 1 queries have been answered with y1, . . . , yi−1. The query Hamiltonian will act
on the larger space X ⊗ Y, where X =

⊗m
i=1 Xi = B⊗m and Y =

⊗m
i=1 Yi. X intends to encode

the answer of query i and Yi the ground state of the corresponding Hamiltonian Hi,y1...yi−1

Yi
. We

define the query Hamiltonian

H =

m∑
i=1

1

4i−1

∑
y1,...,yi−1

i−1⊗
j=1

|yj⟩⟨yj |Xj
⊗
(
2ε|0⟩⟨0|Xi

⊗ IYi
+ |1⟩⟨1|Xi

⊗Hi,y1...yi−1

Yi

)
.

We assume identities on the unspecified subspaces.
The intuition behind the construction is that if λmin(H

i,y1...yi−1

Yi
) ≤ ε (i.e., the query is answered

positively), then it is energetically better to “select” the |1⟩⟨1|Xi
⊗Hi,y1...yi−1

Yi
term and therefore

Xi will be set to |1⟩. On the other hand, if λmin(H
i,y1...yi−1

Yi
) ≥ 3ε, then it is better to select the

2ε|0⟩⟨0|Xi
⊗ IYi

term by setting Xi to |0⟩. The factor 1/4i−1 works similarly to the weighting
functions from Section 3.1 by giving more weight to earlier queries.

For a formal proof, we also refer to Gharibian and Yirka [26] since the proof given in [4] appears
to assume that no invalid queries are made.

3.3.2 Query Hamiltonian for TREES(QMA)

We prove a slightly more general result, akin to Theorem 3.11.

Theorem 3.24. Let G = (V,E) be an n-node QMA-DAG instance and ν a 2-admissable polynomial-
time weighting function. If Wν(G) ≤ poly(n), then the question whether G ∈ QMA-DAG is reducible
to APX-SIM (k = 6 for locality).

Let G be defined as above. G can potentially ask an exponential number of different queries.
Therefore, we cannot use a Hamiltonian with a term for each possible query as above. Instead, we
will make use of the fact that each node in the query tree defines a promise problem Πi ∈ QMA and
provides a verifier Qi. We will construct Hamiltonians Hi from each Qi using a modified version of
the construction from Section 2.3.2.1.

Hi acts on the space Yi = X i⊗Zi, where X i =⊗vj∈pred(vi)
Xj represents the answers of inputs

to Qi, Xj = B the answer to oracle query Qj , and Zi = B⊗m is an ancillary space only Hi operates
on. We define the 5-local Hamiltonian

Hi
Yi

= H ′
in +Hprop +Hout +Hstab

35



by applying the construction from Section 2.3 to Qi. H ′
in is defined by removing the constraints on

the input register A from Hin:

H ′
in =

m∑
j=1

IAB ⊗
(
Π

(0)
j

)
C
⊗ |0⟩⟨0|D.

Register A corresponds to space X i and registers B,C,D to Zi.

Lemma 3.25. We can construct Hi such that it has an orthonormal eigenbasis of the form

{
|x⟩|λix,j⟩

}
x∈{0,1}ni

j∈[2m]

, (3.6)

where ni is the number of qubits in X i.

Proof. We may assume that Qi = Vℓ · · ·V1 copies its input to the ancillary space using CNOT gates.
Therefore, it holds for all t ∈ [ℓ], x ∈ {0, 1}ni and |ϕ⟩ ∈ Zi that

Vt|x⟩|ϕ⟩ = |x⟩|ϕ′⟩

for some |ϕ′⟩ ∈ Zi. Of course, this also holds for V †
t .

An analogous statement is true for Hi since the only nonidentity terms it applies on register A
are the Vt and V †

t terms in Hprop. Thus, it holds for all x ∈ {0, 1}ni , |ϕ⟩ ∈ Zi that

Hi|x⟩|ϕ⟩ = α|x⟩|ϕ′⟩,

for some |ϕ′⟩ ∈ Zi and α ∈ R. Due to linearity, there exists an Hi
x ∈ Herm(Zi) such that

|ϕ′⟩ = Hi
x|ϕ⟩. Let {|λix,j⟩}j∈[2m] be an orthonormal eigenbasis of Hi

x. Then (3.6) is clearly an
orthonormal eigenbasis of Hi.

Lemma 3.26. We can construct Hi with the following properties for some ε ≥ 1/ poly(n):
(1) For all x ∈ Πiyes, there exists a state |ψ⟩ ∈ |x⟩ ⊗ Zi, such that ⟨ψ|Hi|ψ⟩ ≤ ε.
(2) For all x ∈ Πino and states |ψ⟩ ∈ |x⟩ ⊗ Zi, it holds that ⟨ψ|Hi|ψ⟩ ≥ 3ε.

Proof. Let x ∈ Πiyes ∪Πino and define Hi
x = Hin+Hprop+Hout+Hstab analogously to Hi but using

the unmodified

Hin =

 ni∑
j=1

(
Π

(xj)
j

)
A
⊗ IBC +

m∑
j=1

IAB ⊗
(
Π

(0)
j

)
C

⊗ |0⟩⟨0|D.
Choosing appropriate completeness/soundness parameters for Qi, it follows from Lemma 2.32

that ⟨η|Hi
x|η⟩ ≤ ε, where |η⟩ is the history state from (2.2). Due to Lemma 3.25, |η⟩ has the form

|x⟩|η′⟩, which proves (1).
For x ∈ Πno, Lemma 2.33 implies that λmin(H

i
x) ≥ 3ε. (2) follows from the fact that Hi

x|ψ⟩ =
Hi|ψ⟩ for all |ψ⟩ ∈ |x⟩ ⊗ Zi.
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Using the Hi, we define the query Hamiltonian. Let ν be a 2-admissable weighting function.

H =

n∑
i=1

ν(vi)
(
2ε|0⟩⟨0|Xi ⊗ IYi + |1⟩⟨1|Xi ⊗Hi

Yi

)
=:

n∑
i=1

ν(vi)Mi

H acts on the space X ⊗ Z, where Z =
⊗n

i=1Zi and X =
⊗n

i=1 Xi. H is 6-local since the Hi are
5-local. Note that H does not strictly fit Definition 2.28 due to the polynomially sized weights ν(vi).
We can remedy that by rescaling H with 1/Wν(G), which is not an issue since Wν(G) ≤ poly(n).

Lemma 3.27. H has an orthonormal eigenbasis of the form{
|x⟩X ⊗

n⊗
i=1

|λix,ji⟩Zi

}
x∈{0,1}n

j1,...,jn∈[2m]

. (3.7)

Proof. This follows from Lemma 3.25 since the summands of H commute and the proof spaces Zi
of the Hi are distinct.

The next lemma shows that the ground state of H must contain a correct query string.

Lemma 3.28. Let λ = λmin(H). For all incorrect query strings x ∈ {0, 1}n and |ψ⟩ ∈ Z, it holds
that ⟨ϕ|H|ϕ⟩ ≥ λ+ ε, where |ϕ⟩ = |x⟩|ψ⟩.

Proof. Let x ∈ {0, 1}n. Due to Lemma 3.27, the expression ⟨ϕ|H|ϕ⟩ is minimized by some
|ψ⟩ = |x⟩X ⊗

⊗n
i=1|ψi⟩Zi

. Thus, it suffices to show the lemma for |ψ⟩ of that form.
The proof is now similar to Lemma 3.10. Let i ∈ [n] such that xi is incorrect and define

J := {j ∈ [n] | vj /∈ vi↑, j ̸= i}. It then holds that

(
zi ∈ Πiyes ∧ xi = 0

)
∨
(
zi ∈ Πino ∧ xi = 1

)
(3.8)

where zi is defined as in Definition 3.19.
Let |ϕ′⟩ ∈ H minimizing ⟨ϕ′|H|ϕ′⟩ with

H :=
⊗
j∈J

(
|xj⟩Xj

|ψj⟩Zj

)
⊗ |xi⟩Xi

⊗Zi ⊗
⊗
vj∈vi↑

(Xj ⊗Zj) .

We may assume that |ϕ′⟩ has the form

|ϕ′⟩ =
⊗
j∈J

(
|xj⟩Xj

|ψj⟩Zj

)
⊗ |xi⟩Xi

|ψ′
i⟩Zi
⊗
⊗
vj∈vi↑

(
|x′j⟩Xj

|ψ′
j⟩Zj

)
=: |x⟩X |ψ′

1⟩Z1
· · · |ψ′

n⟩Zn

due to Lemma 3.27. It holds for all j ∈ J that xj = x′j , and |ψ′
j⟩ = |ψj⟩. Thus, zj = z′j for all

j ∈ J ∪ {i}.
It holds for all j ∈ [n],

⟨ϕ|Mj |ϕ⟩ = (1− xj) · 2ε+ xj · ⟨zj |⟨ψj |Hi|zj⟩|ψj⟩
⟨ϕ′|Mj |ϕ′⟩ = (1− x′j) · 2ε+ x′j · ⟨z′j |⟨ψ′

j |Hi|z′j⟩|ψ′
j⟩
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Thus, for j ∈ J
⟨ϕ|Mj |ϕ⟩ = ⟨ϕ′|Mj |ϕ′⟩. (3.9)

Since xi is incorrect, one of the two cases in (3.8) is true. In both cases,

⟨ϕ|Mj |ϕ⟩ − ⟨ϕ′|Mj |ϕ′⟩ ≥ ε. (3.10)

For xi = 0, we have ⟨ϕ|Mj |ϕ⟩ = 2ε and ⟨ϕ′|Mj |ϕ′⟩ ≤ ε due to Lemma 3.26 (1). For xi = 1, we have
⟨ϕ|Mj |ϕ⟩ ≥ 3ε due to Lemma 3.26 (2) and ⟨ϕ′|Mj |ϕ′⟩ = 2ε. Note that both statements make use
of the fact that |ϕ⟩ was chosen to minimize ⟨ϕ′|H|ϕ′⟩.

Again due to the choice of |ϕ′⟩, we have for all vj ∈ vi↑,

⟨ϕ|Mj |ϕ⟩ ≤ 2ε. (3.11)

Hence,

⟨ϕ|H|ϕ⟩ − ⟨ϕ′|H|ϕ′⟩ =
n∑
j=1

ν(vj) (⟨ϕ|Mj |ϕ⟩ − ⟨ϕ′|Mj |ϕ′⟩)

≥ ν(vi) · ε−
∑
vj∈vi↑

ν(vj) · 2ε (apply (3.9),(3.10),(3.11))

≥ ν(vi) · ε− (ν(vi)− 1) · ε (ν is 2-admissable)

= ε.

Thus, ⟨ϕ|H|ϕ⟩ ≥ ⟨ϕ′|H|ϕ′⟩+ ε ≥ λ+ ε, which concludes the proof.

We are finally ready to prove the theorem.

Proof of Theorem 3.24. Given G, we construct H as defined above. Let λ = λmin(H). The
observable A = |0⟩⟨0|Xn

then measures the output of the result node of G. We choose as complete-
ness/soundness thresholds α = 0, β = 1/2 and δ = ε/2.

Completeness: By Lemma 3.28, there exists a ground state |ϕ⟩ = |x⟩X |ψ⟩Z , where x is a correct
query string. For G ∈ QMA-DAGyes, we therefore have xn = 1 and thus ⟨ϕ|A|ϕ⟩ = 0.

Soundness: Let G ∈ QMA-DAGno and |ϕ⟩ ∈ X ⊗Z such that ⟨ϕ|H|ϕ⟩ ≤ λ+ δ. By Lemma 3.27,
we can write |ϕ⟩ = √γ|ϕ+⟩+√1− γ|ϕ−⟩ for some γ ∈ [0, 1], such that |ϕ+⟩ is a superposition of
eigenvectors with correct query string and |ϕ−⟩ is a superposition of eigenvectors with incorrect
query string. |ϕ+⟩ and |ϕ−⟩ are orthogonal. Trivially, we have ⟨ϕ+|H|ϕ+⟩ ≥ λ. Due to Lemma 3.28,
we have ⟨ϕ−|H|ϕ−⟩ ≥ λ+ ε. Therefore,

γλ+ (1− γ)(λ+ ε) ≤ ⟨ϕ|H|ϕ⟩ ≤ λ+ ε

⇒ −γε ≤ ε− δ

⇒ γ ≥ ε− δ
ε

=
1

2
.

Since G ∈ QMA-DAGno, we have ⟨ϕ+|A|ϕ+⟩ = 1. As (3.6) is also an eigenbasis of A, we have

⟨ϕ|A|ϕ⟩ = γ⟨ϕ+|A|ϕ+⟩+ (1− γ)⟨ϕ−|A|ϕ−⟩ ≥ γ ≥ 1

2
.
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3.3.3 Flattening the Tree

To be able to apply Theorem 3.24, we show in the following lemma that all n-node QMA-DAG

instances G, where G is a tree, can be converted to an equivalent G′, such that Wω(G) ≤ poly(n).
ω is the 2-admissable weighting function from Lemma 3.8.

Lemma 3.29. Let G be a QMA-DAG instance, where G is a tree. We can compute an equivalent
G′ in polynomial time (i.e., G′ ∈ QMA-DAGyes if G ∈ QMA-DAGyes and G′ ∈ QMA-DAGno if
G ∈ QMA-DAGno ), such that Wω(G) ≤ poly(n).

Proof. The proof is the same as Lemma 3.17 since the hypertree construction works for QMA-DAG

in the same way. One thing we need to be careful about with regards to promise problems is
creating copies of circuits during transformations of the hypertree. The potential issue is that
multiple copies of the same invalid query may be answered differently. However, as argued in
Lemma 3.17, we only create copies of queries during fusions and only once for each query. The
output circuit then passes the output of one of those copies through. Therefore, only one copy of
each query contributes to the output of the result node.

Lemma 3.23 follows due to Theorem 3.24,

3.4 Proof with Total Solution Weight Function

In this section, we present an alternative proof to Lemma 3.23 using a total solution weight function
similar to (3.5). The lemma is implied by the following theorem.

Theorem 3.30. Let ν be a 5-admissable polynomial-time computable weighting function (see
Definition 3.6). A QMA-DAG instance G = (V = {v1, . . . , vn}, E) with Wν(G) ≤ poly(n) can be
decided in polynomial time with O(log n) QMA-oracle queries.

Assume each circuit Qi receives a proof of size m ≤ poly(n). Define

t : {0, 1}n ×
(
B⊗m

)n → R,

t(x, ψ1, . . . , ψn) =

n∑
i=1

ν(vi)
(
JQi(zi, ψi) = xiK +

xi
2

)
, (3.12)

where zi is defined as in Definition 3.19 and Qi(zi, ψi) is the random variable corresponding to Qi’s
output given input zi and proof |ψi⟩. JX = bK is defined as the random variable that is 1 if X = b

and 0 if X ̸= b. Comparing (3.5) and (3.12), the main difference is that the latter is a random
variable. Moreover, (3.12) uses the xi/2 terms because we can no longer directly check if the xi
values match the circuit outputs due to invalid queries.

We define
T := max

x,|ψ1⟩,...,|ψn⟩
E[t(x, ψ1, . . . , ψn)].

Note that the value of T does not change if we allow mixed states as proofs. For ε > 0, define the
promise problem Π with

Πyes = {(t, s) | T ≥ s}
Πno = {(t, s) | T ≤ s− ε}
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Lemma 3.31. For ε ≥ 1/ poly(n), Π ∈ QMA.

Proof. The idea is to sample t multiple times and then apply Hoeffding’s inequality (Lemma 2.1).
Specifically, we construct a QMA verifier Q that gets input t, s and receives as proof x and Nmn
qubits (to be used as proofs for the Qi circuits) for sufficiently large N (to be determined later).
For each sample of t, Q evaluates all JQi(zi, ψi) = xiK expressions and classically computes the
corresponding output of t. Let X1, . . . , XN denote the outcomes of these samples and X their mean.
Q then accepts if X ≥ s− ε/2 and otherwise rejects.

Completeness: Assume it holds T ≥ s. The prover sends a proof

|x⟩
n⊗
i=1

|ψi⟩⊗N ,

such that
E[Xj ] = E[t(x, ψ1, . . . , ψn)] = T = E[X].

Let W = 2 ·Wν(G) ≤ poly(n). Then each Xj is bounded by [0,W ]. By Hoeffding’s inequality, we
have

Pr
[
|X − T | ≥ ε/2

]
≤ 2 exp

(
−Nε

2

2W 2

)
≤ 1

3
,

choosing N ≤ poly(n) to be sufficiently large. Since T ≥ s, Q accepts with probability ≥ 2/3.
Soundness: Assume T ≤ s − ε. Now we cannot just assume that each sample of t receives

the same proof. We argue that Pr[X ≥ T − ε/2] is still maximized by a separable proof. Let
{E0

i , E
1
i } be the POVM for Qi. Then E0

i +E1
i = I and Tr(E1

i ρ) = Pr[Qi accepts ρ]. Note that E0
i

and E1
i are simultaneously diagonalizable with eigenbasis {|λi,k⟩}k. Let z ∈ {0, 1}nN denote the

outcomes of all copies of all Qi. Denote by tz the value computed for X, given outcomes z. Let
Z = {z : tz ≥ T + ε/2} and

E =
∑
z∈Z

⊗
i,j

E
zi,j
i .

Then,
Pr
ρ
[X ≥ T + ε/2] = Tr(Eρ),

where ρ ∈ Herm(B⊗Nmn) is the entire proof given to the verifier. E then has an eigenbasis of
separable states

BE =

⊗
i,j

|λi,ki,j ⟩


(ki,j)i,j

.

Hence, Tr(Eρ) becomes maximal for ρ = |ψ⟩⟨ψ| and some |ψ⟩ =⊗i,j |ψi,j⟩ ∈ BE . Thus, it suffices
to bound

Tr(E|ψ⟩⟨ψ|) = ⟨ψ|E|ψ⟩
=
∑
z∈Z

Pr[∀i, j : j-th copy of Qi has outcome zi,j ]

= Pr

[
1

N

N∑
j=1

t(x, ψ1,j , . . . , ψn,j)︸ ︷︷ ︸
Xj

≥ T + ε/2

]

= Pr[X ≥ T + ε/2].
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Therefore, the Xj are independent with E[Xj ] ≤ T and Xj ∈ [0,W ]. Thus, E[X] ≤ T . Hence, we
can apply Hoeffding’s inequality again:

Pr
[
|X − E[X]| ≥ ε/2

]
≤ 1

3

Since E[X] ≤ T ≤ s− ε for all k, Q accepts with probability ≤ 1/3.

Hence, we can determine T up to an additive error of ε using O(log n) QMA-oracle queries.

Lemma 3.32. If E[t(x, ψ1, . . . , ψn)] > T − 1/3, then x is a correct query string.

Proof. This proof is very similar to Lemmas 3.10 and 3.28. It holds that

E[t(x, ψ1, . . . , ψn)] =

n∑
i=1

ν(vi)
(
Pr[Qi(zi, ψi) = xi] +

xi
2

)
.

Let x be an incorrect query string with incorrect xi. It holds that zi ∈ Πiyes ∪Πino.
Define J := {j ∈ [n] | vj /∈ vi↑, j ̸= i}. For j ∈ J , set x′j := xj and |ψ′

j⟩ := |ψj⟩. Set x′i := xi

and choose |ψ′
i⟩, and |ψ′

j⟩, x′j for all vj ∈ vi↑ to maximize

∑
vj∈vi↑∪{vi}

ν(vj)

(
Pr[Qj(z

′
j , ψ

′
j) = x′j ] +

x′j
2

)
.

Let 1− ε and ε be the completeness/soundness parameters for all Qi (we choose ε later). Since xi
is incorrect, we have for xi = 0,

Pr[Qi(zi, ψi) = xi] +
xi
2
≤ 1

Pr[Qi(z
′
i, ψ

′
i) = x′i] +

x′i
2
≥ 1− ε+ 1

2
=

3

2
− ε,

and for xi = 1,

Pr[Qi(zi, ψi) = xi] +
xi
2
≤ ε+ 1

2

Pr[Qi(z
′
i, ψ

′
i) = x′i] +

x′i
2
≥ 1− ε.

Hence, (
Pr[Qi(z

′
i, ψ

′
i) = x′i] +

x′i
2

)
−
(
Pr[Qi(zi, ψi) = xi] +

xi
2

)
≥ 1

2
− 2ε. (3.13)
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For ε ≤ 1/12,

t(x′, ψ′
1, . . . , ψ

′
n)− t(x, ψ1, . . . , ψn)

=

n∑
j=1

ν(vj)

(
Pr[Qj(z

′
j , ψ

′
j) = x′j ] +

x′j
2

)
−

n∑
j=1

ν(j)
(
Pr[Qj(zj , ψj) = xj ] +

xj
2

)
≥ 1

3
ν(vi)−

∑
vj∈vi↑

ν(j)

(
Pr[Qj(z

′
j , ψ

′
j) = x′j ] +

x′j
2

)
(apply (3.13))

≥ 1

3
ν(vi)−

3

2

∑
vj∈vi↑

ν(j)

=
1

3

ν(vi)− 9

2

∑
vj∈vi↑

ν(vj)


>

1

3
. (ν is 5-admissable)

Thus, T ≥ t(x′, ψ′
1, . . . , ψ

′
n) ≥ t(x, ψ1, . . . , ψn) + 1/3.

After determining T using Lemma 3.31, we determine xn for a correct query string using a final
query. This query is almost the same as outlined in Lemma 3.31, except that it only accepts if
xn = 1. The correctness of this final query then follows from Lemma 3.32. This completes the
proof of Theorem 3.30.

3.5 Further Complexity Classes

A natural question one can ask is whether these results can be generalized to further complexity
classes. This turns out to be true since the proofs in Sections 3.3.3 and 3.4 work with only
trivial modifications for MA-like complexity classes (i.e., there exists a verifier circuit that behaves
similarly to MA). It is, however, necessary for Section 3.4 that some form of amplification is possible
(specifically Lemma 3.31). For QMA(2), we can use separate proofs for all query samples since
QMA(2) = QMA(poly) [33].

Theorem 3.33. For C ∈ {MA,QCMA,QMA,QMA(2)}, TREES(C) = PC[log].

It is not clear whether this result also holds for StoqMA, since StoqMA does not permit gap
amplification (see Definition 2.13). A different idea to prove the theorem for StoqMA would be
the Hamiltonian construction from Section 3.3. This would require a different circuit Hamiltonian
construction specifically for StoqMA. It seems the one given by Bravyi, Bessen and Terhal [12]
might be suitable. There exists a PStoqMA[log]-complete variant of APX-SIM [24].

3.6 Bounded Treewidth Dependency Graph

In this section, we return to the classical setting and extend Gottlob’s result (see Section 3.1) to
the case where the query dependency graph has bounded treewidth (see Definition 2.2).

Definition 3.34 (BTW(NP)). A language L is in BTW(NP) (bounded treewidth) if there exists
a constant k such that L is reducible to an NP-DAG instance G with tw(G) ≤ k.

We will prove the following theorem.
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Theorem 3.35. BTW(NP) = PNP[log].

Trivially, BTW(NP) ⊇ TREES(NP) = PNP[log]. Thus, it only remains to show BTW(NP) ⊆
PNP[log]. For that, we introduce the notion of separator trees that will allow us to hierarchically
decompose graphs with bounded treewidth.

Definition 3.36. A separator tree of an undirected graph G = (V,E) is a tree T = (S =

{S1, . . . , Sm}, ET ) rooted in S1 such that
⋃· mi=1 Si = V , S1 is a balanced separator of G, and the

trees rooted in the children of S1 are separator trees of G \ S1.

Lemma 3.37. Let G = (V,E) be a graph with tw(G) ≤ k. A separator tree with maximum
separator size k can be computed in polynomial time.

Proof. By Lemma 2.4, we have s(G) ≤ k. Therefore, every induced subgraph of G has a balanced
separator. Thus, we can construct the separator tree by finding a balanced separator S of G with
|S| ≤ k and then recursing on the connected components of G \ S.

Theorem 3.38. Fix a constant s > 0. Let G be an NP-DAG instance with s(G) ≤ s. There
exists a polynomial-time algorithm that computes an equivalent NP-DAG instance G′ such that
|v↑| = O(log n) for all v ∈ V (G′).

S = {u1, . . . ur}

G1 G`· · ·

(a) Original graph G.

u1,x ur,x· · ·

G′
1,x G′

`,x· · ·

t

∀x ∈ {0, 1}r

(b) Graph G′ constructed in Theorem 3.38.

Figure 3.2: Illustration of Algorithm 3.4.

Proof. The basic idea is to split the query graph using a separator S = {u1, . . . , ur} into components
G1, . . . , Gℓ. Note that both nodes in S as well as in Gi may have inputs from S. Therefore, for all
possible outputs x ∈ {0, 1}r of queries in S, we create copies Gi,x of Gi and ui,x of ui in which all
inputs from S are hardcoded to x. Inputs from Gi in ui,x are computed from Gi,x. We recurse on
the Gi,x to transform them into G′

i,x. This algorithm is formally given in Algorithm 3.4. Note that
the returned graph does not have a result node. Instead it contains many copies of the original
one. We add a new result node t that selects the correct copy of the original result node using
GetOutput. This construction is illustrated in Figure 3.2.

Formally, we compute a separator tree T = (S, ET ) of G (using Lemma 3.37). Then, we compute
G′′ = Squeeze(G,T ). Let v be the result node of G. We obtain G′ by adding a node t to G′′ with
inputs from all other nodes in G′′ that computes the result using GetOutput(v, T,G′′, y) as in
Line 20 of Squeeze (y is constructed from the inputs of t).
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Algorithm 3.4 Transform a query graph G with s(G) ≤ s into an equivalent G′ where each node
has logarithmically many successors.

1: function Squeeze(G = (V,E), T = (S, ET ))
2: Let S = {u1, . . . , ur} be the root of T . ▷ r ≤ s
3: Let T1, . . . , Tℓ be the trees rooted at the children S1, . . . , Sℓ of S. ▷ ℓ may be 0
4: Let G1, . . . , Gℓ be the corresponding induced subgraphs of G.
5: Let G′ = (V ′, E′) be an empty graph.
6: for all x ∈ {0, 1}r do
7: for i = 1, . . . , ℓ do
8: Let Gi,x be a copy of Gi.
9: for j = 1, . . . , r do

10: Replace all inputs from uj in Gi,x with a constant xj .
11: G′

i,x ← Squeeze(Gi,x, Ti)
12: Add G′

i,x to G′.

13: for i = 1, . . . , r do
14: Let ui,x be a copy of ui.
15: for all v ∈ pred(u) do
16: if ∃k : v = uk then
17: Replace v with a constant xk.
18: else
19: Let k such that v ∈ Gk.
20: Replace v with GetOutput(v, Tk, G′

k,x, y). ▷ ui,x uses its inputs as y.

21: Add ui,x to G′ with incoming edges from all nodes in G′
1,x, . . . , G

′
ℓ,x.

22: return G′.

23: function GetOutput(v, T,G′, y : V (G′)→ {0, 1})
24: Let S = {u1, . . . , ur} be lexicographically ordered. ▷ Reuse terminology from Squeeze
25: x← 0r

26: for i = 1, . . . , r do
27: xi ← y(ui,x)

28: if ∃i : v = ui then
29: return xi
30: else
31: Let i such that v ∈ Gi.
32: return GetOutput(v,G′

i,x, Ti, y)

Squeeze clearly has polynomial runtime excluding the recursion. T has height O(log n) and
each call does at most 2s = O(1) recursive calls on children. Hence, there will be at most 2s·O(logn)

calls in total, which is polynomial.
Each call of Squeeze adds at most 2s outputs to nodes in G′

1,x, . . . , G
′
ℓ,x. Hence, each node

has O(log n) outputs. By construction, each node v ∈ V (G′) has direct edges to all nodes in v↑.
We finally show correctness. For that we need to argue that, given correct outputs y of G′,

(1) y(ui,x) is the correct output of ui if xj is the correct output of uj for all j ∈ [r],
(2) GetOutput(v, T,G′, y) returns the correct output for all v ∈ V .

We do this using induction on |S|.
For |S| = 1, G′ contains copies of all queries with all possible inputs as singular nodes. Therefore,

(1) follows immediately. (2) follows from the fact that GetOutput sorts the queries topologically.
Therefore, y(ui,x) is the correct output for ui as xj (for j < i) was already set to the correct output
of uj , and ui has no incoming edges from uj for j ≥ i.

Now let |S| > 1 and assume (1) and (2) hold for smaller |S|. By the inductive hypothesis,
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GetOutput(v, Tk, G′
k,x, y) (see Line 20) returns the correct output for v if xj is the correct output

for uj for all j ∈ [r]. Thus, (1) follows because all inputs to ui,x are computed correctly by the
inductive hypothesis (2). In GetOutput, the string x is constructed correctly since the ui are
sorted topologically and (1) (same argument as the base case). If GetOutput returns in Line 29,
(2) follows from the fact that xi is computed correctly. Otherwise, it returns in Line 32, and (2)
follows from the inductive hypothesis (2).

Theorem 3.35 then follows from Theorem 3.11 and ν = ω.
There seems to be no straightforward way to generalize this result to promise problems because

the outputs of multiple copies of a query may be used in the computation of the final result (see
also Lemma 3.29). Hence, G and G′ are no longer necessarily equivalent. Therefore, the question
whether PQMA[log] = BTW(QMA) remains an interesting open question.
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Chapter 4

Upper Bounds for QMA

The previous chapter dealt with the complexity class PQMA[log], which can be seen as an “upper
bound” of QMA since it trivially holds that QMA ⊆ PQMA[log]. Another upper bound is A0PP,
which has been shown to contain QMA by Vyalyi [61]. In this chapter, we will compare the
two complexity classes PQMA[log] and A0PP. We begin by ruling out one approach for showing
PQMA[log] ⊆ A0PP by proving that C=P ⊈ A0PP unless PH ⊆ PP (see Section 4.1). Afterwards,
we construct oracle separations for A0PP and PQMA[log] in both directions (see Sections 4.2 and 4.3).
In fact, we prove somewhat stronger results from which these oracle separations follow. This gives
some evidence that neither A0PP ⊆ PQMA[log] nor PQMA[log] ⊆ A0PP.

4.1 A0PP vs. C=P

There exists a very simple proof for the result that PQMA[log] ⊆ PP. Gharibian and Yirka [26]
proved this result using a rather involved proof based on the hierarchical voting scheme used in the
proof of PNP[log] ⊆ PP by Beigel, Hemachandra, and Wechsung [9].

Theorem 4.1. PQMA[log] ⊆ PP.

Proof. This proof is based on truth table reductions. A language A is polynomial-time truth table
reducible to a language B, denoted A ≤tt B, if A ∈ P∥B. Gharibian, Piddock, and Yirka have
shown PQMA[log] = P∥QMA [24]. Fortnow and Reingold [21] have shown that PP is closed under
truth table reductions (i.e., PP = P∥PP). Since QMA ⊆ PP [45], we have

PQMA[log] = P∥QMA ⊆ P∥PP = PP.

We need to be careful with the containment P∥QMA ⊆ P∥PP since QMA is a class of promise
problems, whereas PP = P∥PP was only shown for languages.1 However, we can easily transform a
P∥QMA-machine M into a P∥PP-machine M ′ by converting QMA queries to PP queries. M ′ now
implicitly defines a language, which is in PP.

Now, if A0PP were closed under truth table reductions, then PQMA[log] ⊆ A0PP would follow
by the same argument. We will argue that this is not likely to be true.

It trivially holds that coC=P ⊆ A0PP. If A0PP were closed under truth table reductions (and
thereby also under complement), then C=P ⊆ A0PP would follow.

1P∥PP = PP likely also holds for promise problems, but we do not prove this here.
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Theorem 4.2. C=P ⊆ A0PP implies PH ⊆ PP.

Proof. This is proof is essentially the same as Vyalyi’s proof that A0PP = PP implies PH ⊆ PP

[61, Theorem 2].
Assume C=P ⊆ A0PP and let L ∈ PH. We will show that then L ∈ PP. By Toda’s theorem

(Theorem 2.24), L ∈ P#P[1]. Therefore, L is recognized by a deterministic polynomial-time Turing
machine M querying a #P-oracle for the value f(y), where f ∈ #P.

Define a function gM : {0, 1}∗ × Z → Z, where gM (x, j) is defined as the output of M(x),
where the oracle query is answered by j. Clearly, gM ∈ FP and gM (x, j) = χL(x) if j = f(y) and
gM (x, j) ∈ {0, 1} otherwise.

Let L′ := {⟨y, j⟩ | f(y) = j} and g′(y, j) := f(y)− j. Then, g′(y, j) = 0 iff ⟨y, j⟩ ∈ L′. Hence,
L′ ∈ C=P.

By our assumption, L′ ∈ A0PP. Hence, there exists g̃ ∈ GapP, such that for n := |x|, ℓ :=
n+ q(n), where 2q(n) − 1 is an upper bound on f(y):

f(y) = j ⇒ g̃(y, j) > 2p(ℓ)

f(y) ̸= j ⇒ 0 ≤ g̃(y, j) < 2−q(n)2p(ℓ)

We now define our final g ∈ GapP, making use of the closure properties of GapP (shown in [20]):

g(x) :=
∑

j∈{0,1}q(n)

gM (x, j) · g̃(h(x), j),

where h ∈ FP with h(x) = y.

x ∈ L ⇒ g(x) ≥ gM (x, f(y)) · g̃(y, f(y)) = χL(x) · g̃(y, f(y)) > 2p(ℓ)

x /∈ L ⇒ g(x) < 2q(n)2−q(n)2p(ℓ) ≤ 2p(ℓ)

It follows that L ∈ PP.

4.2 coNP vs. A0PP

In this section, we construct an oracle A such that coNPA ⊈ A0PP
A. We will also argue that

the containment SBQP ⊆ A0PP relativizes. Since the containment coNP ⊆ PQMA[log] trivially
relativizes, we have

coNPA ⊆ PQMAA[log] ⊈ SBQPA ⊆ A0PP
A.

We first give a proof from first principles (Sections 4.2.1 and 4.2.2). Afterwards, we give a very simple
proof using query complexity (Section 4.2.3), that was pointed out to us by William Kretschmer.

4.2.1 Technical Lemmas

In the following, we show some technical lemmas we will use for the oracle separation. Here, we
define ∥f∥ := maxx∈[−1,1]|f(x)| for a function f : [−1, 1]→ R.

Lemma 4.3 (Markov [49]). Let p be a polynomial with deg(p) ≤ n. Then, ∥p′∥ ≤ n2∥p∥.
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Lemma 4.4. Let p be a polynomial with deg(p) = n and |p(i)| ≤ 1 for all i ∈ [2N ]. If n2/N < 1−ε
for some ε > 0, then |p(0)| < ε−1.

Proof. The following proof is adapted from [55]. Let

π : [−1, 1]→ [0, 2N ], x 7→ (x+ 1) ·N,

and q = p ◦ π (◦ denotes function composition). q is a polynomial with deg(q) = n. For k ∈ [N ],
define

ξk := −1 + 2k − 1

N
.

Then,

π(ξk) = π

(
−1 + 2k − 1

N

)
= 2k − 1.

Thus, |q(ξk)| = |p(2k − 1)| ≤ 1 for all k ∈ [N ]. It also holds that q(−1) = p((−1 + 1)N) = p(0).
Let x ∈ [−1, 1]. There exists a k such that |x− ξk| ≤ 1/N . By the mean value theorem, there

exists a z ∈ [−1, 1], such that

|q(x)| ≤ |q(ξk)|+ |ξk − x| · |q′(z)|

≤ 1 +
1

N
∥q′∥.

Therefore,

∥q∥ ≤ 1 +
1

N
∥q′∥

≤ 1 +
n2

N
∥q∥ (apply Lemma 4.3)

< 1 + (1− ε)∥q∥.

Hence, ∥q∥ < ε−1.

Lemma 4.5. Let x0, . . . , xm, T ∈ R and yk :=
∑k
i=0

(
k
i

)
xi with yk ∈ [0, εT ] for all k ∈ [N ], where

m2/N < 1− ε for some ε > 0. Then |y0| < T .

Proof. We can write binomial coefficients as polynomials:(
t

k

)
=

(t)k
k!

=
t(t− 1)(t− 2) · · · (t− k + 1)

k(k − 1)(k − 2) · · · 2 · 1 .

Note that this is still correct for 0 ≤ t < k as then the numerator has a root in t. Hence,

f(k) := yk =

k∑
i=0

(
k

i

)
xi =

m∑
i=0

(
k

i

)
xi

is a polynomial of degree m with |f(i)| ≤ εT for i = 1, . . . , N . Lemma 4.4 now implies |y0| =
|f(0)| < T .

Lemma 4.6. Let
(1) S be a set with |S| = N ,
(2) g : 2S → R with g(B) = 0 for |B| > m, where m2/N < 1− ε for some ε > 0,
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(3) f(A) =
∑
B⊆A g(B), f(A) ∈ [0, εT ] for some T > 0 and all ∅ ≠ A ⊆ S.

Then |f(∅)| < T .

Proof. Assume |f(∅)| ≥ T . We obtain a contradiction by defining the xi for i = 0, . . . , N in
Lemma 4.5 as the average of g(B) over all B of size i. Thus, we set

xi :=
1(
N
i

) ∑
B⊆S

|B|=i

g(B).

Note that xi = 0 for i > m. Hence,

yk =

k∑
i=0

(
k

i

)
xi =

k∑
i=0

(
k
i

)(
N
i

) ∑
B⊆S

|B|=i

g(B).

Next, we will show for all k

yk =
1(
N
k

) ∑
A⊆S

|A|=k

f(A), (4.1)

which implies |y0| ≥ T and yk ∈ [0, εT ] for k > 0, contradicting Lemma 4.5. It holds that

1(
N
k

) ∑
A⊆S

|A|=k

f(A) =
1(
N
k

) ∑
A⊆S

|A|=k

∑
B⊆A

g(B) =
1(
N
k

) k∑
i=0

∑
B⊆S

|B|=i

(
N − i
k − i

)
g(B).

Regarding the second equality, observe that there are
(
N−i
k−i
)

ways to choose a set A with |A| = k

that contains a set B with |B| = i. For (4.1) to hold, it is therefore sufficient that(
k
i

)(
N
i

) =

(
N−i
k−i
)(

N
k

)
⇔

(
N

k

)(
k

i

)
=

(
N

i

)(
N − i
k − i

)
⇔ N !k!

k!(N − k)!i!(k − i)! =
N !(N − i)!

i!(N − i)!(k − i)!(N − k)!

⇔ N !

(N − k)!i!(k − i)! =
N !

i!(k − i)!(N − k)! .

The last equality holds trivially.

4.2.2 Oracle Separation

Theorem 4.7. There exists an oracle A such that coNPA ⊈ A0PP
A.

Proof. The proof is similar to the well known oracle separation of P and NP. We define the unary
language LA := {1n | ∄y ∈ A : |y| = n}.

First, we show LA ∈ coNPA for all A. Let M be the NTM that on input x = 1n chooses a y
with |y| = n nondeterministically and accepts iff y /∈ A. If x ∈ LA, then all paths of M accept.
Otherwise, there must be some rejecting path. Hence, M accepts LA.

Next, we construct A such that LA /∈ A0PP
A using diagonalization. Recall the definition of

A0PP
A: L ∈ A0PP iff there exist a CM MA and T ∈ FP such that
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(a) if x ∈ L, then gapMA(x) > T (x),
(b) if x /∈ L, then 0 ≤ gapMA(x) < εT (x).

We will enumerate all pairs (MA
i , Ti) and construct Ai ⊆ {0, 1}ni such that (MA

i , Ti) either violates
the above bounds or makes a mistake on input 1ni , where we define A =

⋃
iAi and choose ni to be

sufficiently large to satisfy the below conditions:
• For j < i, MA

j (1
nj ) only asks oracle queries y with |y| < ni. Hence, gapMA

i
(1ni) =

gap
MAi

i
(1ni) for Ai :=

⋃i
j=1Ai.

• Each execution path of MA
i (1ni) asks at most m queries, where m2/2ni/2 < 1− ε.

Both conditions can easily be fulfilled since the MA
i run in polynomial time.

We can write gap
M

Ai−1∪Ai
i

(1ni) as a function in Ai, i.e.,

f(Ai) := gap
M

Ai−1∪Ai
i

(1ni).

Now consider the execution of MA
i . We can essentially view it as a tree in which each interior

node has two children and corresponds either to an oracle query or the nondeterministic choice
of a single bit. Each leaf v is labeled with ℓ(v) ∈ {−1,+1}, depending on whether the machine
accepts or rejects. We can remove nodes corresponding to oracle queries not having length ni since
their outcome is fixed already (we are only interested in the dependency on Ai). Let r be the root
node. For an interior node v, denote by vi, i ∈ {0, 1} the child of v corresponding to oracle answer i
or nondeterministic choice of bit i. Let xv be the query string of an oracle query node v. Then
f(Ai) = h(r) for the following recursively defined function h:

h(v) =


ℓ(v), v is a leaf

h(v0) + h(v1), v is a nondeterministic bit choice

(1−Ai(xv))h(v0) +Ai(xv)h(v1), v is an oracle query

Thus, f(Ai) has the following form, which is obtained by applying distributivity:

f(Ai) = h(r) =
∑

B⊆{0,1}ni

g(B)
∏
x∈B

Ai(x) =
∑
B⊆Ai

g(B),

where g(B) is implicitly defined by h and the resulting coefficients after expanding all terms as
above. We may assume g(B) = 0 if B does not correspond to the set of queries actually asked along
some path in the tree. Notably, g(B) = 0 for |B| > m, as MA

i cannot make that many queries.
S = {0, 1}ni and g satisfy conditions (1) and (2) of Lemma 4.6 for T := Ti(1

ni). Therefore, one
of the following cases holds.

1. f satisfies (3). Therefore, f(∅) < T . This means that either MAi−1

i is not a valid A0PP

machine or it rejects 1ni . Hence, MA
i makes a mistake for Ai := ∅.

2. f does not satisfy (3). Therefore, there exists an ∅ ̸= Ai ⊆ {0, 1}n for which f(Ai) /∈ [0, εT ].
Thus, MA

i is either invalid or it wrongly accepts 1ni .
It follows that for the constructed oracle A, there exist no CM MA and T ∈ FP satisfying (a) and
(b) for LA.

As previously mentioned, it holds that A0PP = SBQP [47]. So one might ask whether we
can also obtain an oracle separation for SBQP. We confirm this by showing that the inclusion
SBQP ⊆ A0PP relativizes. We define oracle access for a quantum circuit as in [51] by allowing the
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circuit to use a special oracle gate OAn which is defined by

OAn |x⟩|b⟩ = |x⟩|b⊕A(x)⟩ (4.2)

for all x ∈ {0, 1}n and b ∈ {0, 1}.

Lemma 4.8. For all oracles A, SBQPA ⊆ A0PP
A.

Proof. This proof is based on [47, Proposition 2.13], which in turn is based on [1, Proposition 3.2].
Let L ∈ SBQPA. Then, there exists a family of circuits Qn ∈ U(B⊗n+q(n)), for some polynomial q
such that for x ∈ {0, 1}n and |ψin⟩ := |x⟩ ⊗ |0q(n)⟩,

Pr[Qn accepts x] = ∥Π1Qn|ψin⟩∥22

≤ 2−p(n)−1, x /∈ L
≥ 2−p(n), x ∈ L

,

where p is a polynomial, and Π1 = |1⟩⟨1| ⊗ In+q(n)−1. We may assume that Qn = Ut(n) · · ·U1,
where each Ui is either an oracle query, or a Hadamard or Toffoli gate [47]. Let U ′

i :=
√
2Ui if Ui is

a Hadamard gate, and otherwise U ′
i := Ui. Let Q′

n := U ′
t(n) · · ·U ′

1 =
√
2kQn, where k is the number

of Hadamard gates in Qn. Then, Q′
n and U ′

i only contain integer entries.
Next, we construct a function g ∈ GapPA, such that g(x) equals the acceptance probability

times a sufficiently large factor to make it integer. For any z ∈ {0, 1}n+q(n), i = 1, . . . , t(n), we can
write

U ′
i |z⟩ =

∑
w∈{0,1}n+q(n)

a(i, w, z)|w⟩.

Clearly, a(i, w, z) ∈ {0, 1,−1} and as a function a(i, w, z) ∈ FPA.
It holds that

2k∥Π1Qn|ψin⟩∥22 = ∥Π1Q
′
n|ψin⟩∥22 =

∑
w∈{0,1}n+q(n)−1

b21w,

for
Q′
n|ψin⟩ =

∑
w∈{0,1}n+q(n)

bw|w⟩,

where bw ∈ Z. We define

g(x) :=
∑

w∈{0,1}n+q(n)−1

b21w ∈ GapPA,

T (x) := 2k−p(n) ∈ FP.

It holds that g ∈ GapPA since the b1w terms can be computed by nondeterministically choosing
a path w0 = x0q(n), w1, . . . , wt(n)−1, wt(n) = 1w and multiplying the a(i, wi, wi−1) terms together.
Hence, L ∈ A0PP

A.

4.2.3 Query Complexity

In the following, we present an alternative oracle separation due to William Kretschmer.2

2William Kretschmer gave a proof sketch in personal communications after we came up with the presented proof
for Theorem 4.7.
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4.2.3.1 Approximate Degree

Let LA be defined as in Theorem 4.7. Then, checking if 1n ∈ LA is equivalent to computing
ANDN (X), where

ANDn : {0, 1}n → {0, 1}, x 7→
n∏
i=1

xi =

1, if x = 1n

0, otherwise,

X ∈ {0, 1}N , N = 2n, and Xi = A((i− 1)2) for i ∈ [N ], where (m)2 denotes the binary encoding of
m ∈ N.

Definition 4.9 (Approximate Degree [52]). Let f : {0, 1}n → {0, 1} be a boolean function, and
p : Rn → R a polynomial (with n variables). We say p approximates f , if for every x ∈ {0, 1}n, we
have that |p(x)− f(x)| ≤ 1/2. The approximate degree of f , denoted d̃eg(f), is defined to be the
minimum degree of p, over all polynomials p that approximate f .

Note that every boolean function can trivially be written as a polynomial of degree n.

Lemma 4.10 ([52]). d̃eg(ANDn) = Ω(
√
n).

4.2.3.2 Polynomial Method

The polynomial method for quantum circuits is due to Beals et. al [8]. Let QX be a quantum
circuit that queries the oracle string X ∈ {0, 1}N at most T times. Therefore, we can write
QX = UtOtUt−iOt−i · · ·U1O1U0, where the Oi represent oracle queries of the form (4.2) and the
Ui are independent of X.

Lemma 4.11 ([8]). There exists a polynomial p : RN → R with deg(p) ≤ 2t such that

Pr[QX accepts] = p(X).

Now assume there exists an SBQP circuit QX with t oracle queries to an oracle for X ∈ {0, 1}N
that decides ANDN (X). Here, we allow the SBQP circuit to consist of an unlimited number of gates,
whereas Definition 2.20 only allows poly(n) gates. Due to Lemma 4.11, there exists a polynomial
p : RN → R and polynomial q : N→ N such that deg(p) ≤ 2t, and

Pr[QX accepts] = p(X)

≥ 2−q(n), if X = 1N

≤ 2−q(n)−1, if X ̸= 1N

Define p̃(X) = p(X)/p(1N ). Then p̃(1N ) = 1 and |p̃(X)| ≤ 1/2 for X ̸= 1N . Therefore, p̃
approximates ANDN . Thus, t = Ω(

√
N) due to Lemma 4.10.

We say that ANDN has an SBQP query complexity Ω(
√
N) as any SBQP circuit requires Ω(

√
N)

queries to X to decide whether X = 1N .
This allows us to construct an oracle A such that LA /∈ SBQPA using diagonalization as in

Theorem 4.7 since a coNP machine only requires a single query to decide ANDN .
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4.3 SPP vs. P∥QMA(2)

In this section, we construct on oracle A such that SPPA ̸⊆ P∥QMA(2)A . Since the containments
SPP ⊆ A0PP and PQMA[log] ⊆ P∥QMA(2) trivially relativize, we have

SPPA ⊆ A0PP
A ⊈ PQMAA[log] ⊆ P∥QMA(2)A .

Theorem 4.12. There exists an oracle A, such that SPPA ̸⊆ P∥QMA(2)A

Proof. For any oracle A, define An := A ∩ {0, 1}n. Then define the language

LA :=
{
1n : |An| = 2n−1

}
.

Under the promise that |An| ∈ {2n−1, 2n−1 + 1} for all n, it trivially holds that LA ∈ SPPA.
Next, we will construct A such that LA /∈ P∥QMA(2)A using diagonalization. We enumerate all

Turing machines M . We may assume that M begins by writing classical descriptions of m verifiers
Qk together with the queries xk onto a tape. The oracle then writes the answers back to the tape.
For simplicity, we assume that M on input 1n only queries strings of length n (i.e., An). Qk shall
have polynomially sized registers B (input), C (proof), D (ancilla), E (oracle query), and F (query
answer). Hence, it holds that

Qi = UtO
A
nUt−1O

A
n · · ·OAnU2O

A
nU1,

where the Ui are unitary and the OAn are defined similarly to (4.2): For all x ∈ {0, 1}n and b ∈ {0, 1},

OAn |η⟩BCD|x⟩E |b⟩F = |η⟩BCD|x⟩E |b⊕A(x)⟩F

Let An := {0} × {0, 1}n−1. In the following, we will modify An step by step in such a way that
all oracle queries are eventually answered with 1. Let us fix some verifier Qk, proof |ψ⟩, and input
xk ∈ {0, 1}n. Define |ϕ0⟩ := |xk⟩B |ψ⟩C |0⟩DEF and |ϕi⟩ := UiOn · · ·OnU1|ϕ0⟩ for i = 1, . . . , t. We
can write

|ϕi⟩ =
∑

y∈{0,1}n

αi,y|y⟩E |ηi,y⟩BCDF .

Let ε ≥ 1/ poly(n). Since
∑
y |αi,y|2 = ∥|ϕi⟩∥22 = 1, there exists z ∈ {0, 1}n \ An, such that

|αi,z|2 < ε/t, for sufficiently large n.
Define |ϕ′i⟩ analogously over A′

n := An ∪ {z}. Trivially, |ϕ1⟩ = |ϕ′1⟩. After the oracle query, we
have

|⟨ϕ1|O†
nO

′
n|ϕ′1⟩| =

∣∣∣∣∣∣
∑
y ̸=z
|α1,y|2 + |α1,z|2⟨η1,z|O†

nO
′
n|η′1,z⟩

∣∣∣∣∣∣ > 1− ε/t,

and hence |⟨ϕ2|ϕ′2⟩| > 1− ε/t. Continuing this argument inductively, we have |⟨ϕt|ϕ′t⟩| > 1− ε.
For Π = |1⟩⟨1|C1 ⊗ I, we can now compare the acceptance probabilities for Qk with oracles An
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and A′
n for input x and proof |ψ⟩:

|Tr(Π|ϕt⟩⟨ϕt|)− Tr(Π|ϕ′t⟩⟨ϕ′t|)| = |Tr(Π(|ϕt⟩⟨ϕt| − |ϕ′t⟩⟨ϕ′t|))|
≤ ∥Π∥∞ · ∥|ϕt⟩⟨ϕt| − |ϕ′t⟩⟨ϕ′t|∥tr
= 2
√

1− |⟨ϕt|ϕ′t⟩|2 (apply Lemma 2.8)

< 2
√
1− (1− ε)2

≤ 4
√
ε

Thus, if the proof |ψ⟩ is accepted with probability ≥ 2/3, we can add (and by the same argument
also remove) strings to An and either there still exists a proof accepted with probability ≥ 2/3, or
xk becomes an invalid input as |ψ⟩ is still accepted with probability ≥ 1/2. In the latter case, we
assume that the oracle still answers positively. Note that we can choose the answers for invalid
oracle queries freely as we want to prove that M does not decide the language LA.

Finally, we can describe the construction of An. Assume M decides language LA with oracle
access as defined above. While there exists an oracle query that is answered negatively, we
alternatingly add or remove a string from An (at most m times). Hence, the output of M on input
1n must change in each iteration and therefore the answer to an oracle query as well. Choosing ε
such that 4

√
ε < 1/(3(m+ 1)), allows us to perform at least m such operations without turning a

positive query into a negative one. Note that we now must choose a z for which |αi,z|2 < ε/t holds
in all queries, which is not an issue since there are at least 2n−1−1 choices for z. As positive queries
stay positive, at least one negative query must become positive in each iteration. We assume invalid
queries are answered as negative until they become positive. Once positive, a query shall always be
answered positive, as it may become invalid but not negative, by the construction of this algorithm.

Let A be the resulting oracle after at most m iterations. If the output of M is correct, we add or
remove another string from An without changing the result of any query. Thus, M cannot decide
LA.
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Chapter 5

On GSCONexp

The ground state connectivity problem (GSCON) introduced by Gharibian and Sikora [25] intuitively
asks the following question: Given a Hamiltonian H and ground states |ψ⟩ and |ϕ⟩, does there exist
a sequence of local gates that maps |ψ⟩ to |ϕ⟩, such that all intermediate states have low energy
with respect to H? Formally, it is defined as follows.

Definition 5.1 (GSCON(H, k, η1, η2, η3, η4,∆, l,m, Uψ, Uϕ) [25]).
Input:

• A k-local Hamiltonian H ∈ Herm (B⊗n).
• η1, η2, η3, η4,∆ ∈ R and integer m ≥ 0, such that η2 − η1 ≥ ∆ and η4 − η3 ≥ ∆.
• Polynomial size quantum circuits Uϕ, Uψ generating “starting” and “target” states |ϕ⟩ and
|ψ⟩ (on input |0n⟩), respectively, satisfying ⟨ψ|H|ψ⟩ ≤ η1 and ⟨ϕ|H|ϕ⟩ ≤ η1.

Output:
YES: There exists a sequence of l-local unitaries U1, . . . , Um such that:

(a) (Intermediate states remain in low energy space) For all i ∈ [m] and intermediate
states |ψi⟩ := Ui · · ·U1|ψ⟩, it holds that ⟨ψi|H|ψi⟩ ≤ η1, and

(b) (Final state is close to target state) ∥|ψm⟩ − |ϕ⟩∥2 ≤ η3.
NO: For all l-local sequences of unitaries U1, . . . , Um, either:

(a) (Intermediate state obtains high energy) There exists i ∈ [m] and an intermediate
state |ψi⟩ such that ⟨ψi|H|ψi⟩ ≥ η2, or

(b) (Final state far from target state) ∥|ψm⟩ − |ϕ⟩∥2 ≥ η4.

We assume Uψ and Uϕ to be given as sequences of gates from a universal gate set. The numeric
parameters are specified with rational entries using O(poly(n)) bits of precision. Note that |ψ⟩ and
|ϕ⟩ are not necessarily required to be ground states.

This definition is quite flexible as it allows all parameters to be specified. For 2-local unitaries,
a 5-local Hamiltonian, polynomial m and ∆, GSCON is QCMA-complete.

Theorem 5.2 ([25]). There exists a polynomial p such that GSCON is QCMA-complete for
m = O(p(n)), ∆ = Θ(1/m5), l = 2, and k ≥ 5, where n denotes the number of qubits H acts on.

Choosing different parameters leads to PSPACE-completeness.

Theorem 5.3 ([25]). GSCON is PSPACE-complete for m = 2n, ∆ = 2−(2n+4), l = 1, k = 3,
where n denotes the number of qubits H acts on.
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This result is a consequence of the fact that S, T -CONN is PSPACE-complete [29].

Definition 5.4 (S, T -CONN). Given a 3-CNF formula ϕ and solutions x, y ∈ {0, 1}n to ϕ, does
there exist a sequence of strings x1, . . . , xm, such that

• x1 = x, and xm = y, and
• for all i ∈ [m], the Hamming distance between xi and xi+1 is at most 1, and
• for all i ∈ [m], xi is a solution to ϕ?

Observe the similarity between S, T -CONN and GSCON: ϕ corresponds to H, x to |ψ⟩, y to
|ϕ⟩, and xi to |ψi⟩.

We now ask the question, what is the power of GSCON, for l = 2 and m = 2poly(n)? We call
this class GSCONexp.

Definition 5.5 (GSCONexp). GSCONexp is the union over all GSCON(· · · ), where l = 2, m =

O(2p(n)) and ∆ = Ω(2−p(n)) for some polynomial p.

Let us briefly argue why we believe GSCONexp to be worthy of study. To show the containment
GSCON ⊆ QCMA for polynomial m and ∆, one can construct a QCMA-verifier that receives
classical approximations of the unitaries U1, . . . , Um as proof. That technique no longer works
for GSCONexp. The paths through the Hamiltonian’s low energy space can be of exponential
length and therefore intermediate states can no longer be expressed succinctly. For that reason, we
conjecture that GSCONexp may not even by contained in PSPACE.

We investigate several questions regarding GSCONexp. First, we show in Section 5.1 that

PSPACE ⊆ GSCONexp ⊆ NEXP.

Note that the second containment is trivial, since a NEXP-verifier can choose the unitary sequence
nondeterministically. Also, the first containment is not implied by Theorem 5.3, since 2-local
unitaries can flip two bits at the same time.

A natural question is whether there exists a better upper bound than NEXP. We do not know
the answer to that question. One intuitive candidate would be a quantum analogue of NPSPACE,
which we model as a variant of QCMA with an exponentially long proof and polynomially many
qubits. However, we argue in Section 5.2 that any such construction equals NEXP.

Lastly, we show in Section 5.3, that for sufficiently large m = 2poly(n), we can map |ψ⟩ to |ϕ⟩
while remaining close to the Span (|ψ⟩, |ϕ⟩). We can make the distance to the span arbitrarily small
by increasing m. We conclude that GSCONexp does not have any no-instances with m = 2poly(n)

and ∆ = 2−o(n) for sufficiently large n.

5.1 PSPACE ⊆ GSCONexp

During the proof of Theorem 5.2, Gharibian and Sikora [25] show the following result.

Lemma 5.6. Let H ∈ Herm (B⊗n) be a k′-local Hamiltonian. Consider the following promise
problem Π.
YES: There exists a sequence U1, . . . , Um of l-local gates such that Um · · ·U1|0n⟩ has energy at

most α with respect to H.
NO: For all sequences U1, . . . , Um of l-local gates, Um · · ·U1|0n⟩ has energy at least β with

respect to H.
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Π is polynomial-time reducible to GSCON with η1 = α, η2 = β/(16m2), η3 = 0, η4 = 1/4, l = 2,
k = k′ + 2, ∆ = η2 − η2, if ∆ > 0.

To prove PSPACE ⊆ GSCONexp, we combine Lemma 5.6 with two further insights. Firstly,
2r(n) unitary 2-local gates are sufficient to construct any state |ψ⟩ ∈ Bn exactly (starting in |0n⟩)
for some polynomial r [51]. Therefore, the problem Π defined in Lemma 5.6 is equivalent to the
problem whether λmin(H) ≤ α or λmin(H) ≥ β for m = 2p(n).

Secondly, QMA with an inverse exponential promise gap (i.e., c − s = 2− poly(n)), denoted
QMAexp, was shown by Fefferman and Lin to be PSPACE-complete [17]. They also show that
k-LH with inverse exponential gap, denoted precise k-LH, is PSPACE-complete. Their construction
leads to the following lemma, which allows us to reduce PSPACE to a precise k-LH instance with
thresholds α and β, such that we can apply Lemma 5.6 to solve it in GSCONexp with m = 2r(n).

Lemma 5.7. Any problem Π in PSPACE is reducible to a k-LH instance with β/α ≥ 2p(n) with
α ≥ 2− poly(n), where p(n) is a freely chosen polynomial.

Proof. This proof is based on [17, Theorem 2]. Π can be reduced to QMAexp with completeness c
and soundness s, such that

1− c = ε, 1− s = −ε+ 2−g(n),

for some polynomial g(n) depending on Π and any ε = 2−q(n) for some polynomial q(n) of our
choice [17].

The corresponding QMAexp verifier uses T ≤ h(n, log(1/ε)) gates, for some polynomial h(x, y)
[17]. Hence, QMAexp with completeness c and soundness s can be reduced to a 3-local Hamiltonian
instance with thresholds

α =
1− c
T + 1

=
ε

T + 1
,

β =
1− s
T 3

=
2−g(n) − ε

T 3
.

We can then choose a polynomial q(n) ≥ 2g(n) such that

β

α
=
T + 1

T 3

2−g(n) − ε
ε

≥ T−2 ε−1 2−g(n)−1

=
2q(n)−g(n)−1

h2(n, q(n))

≥ 2p(n).

Theorem 5.8. PSPACE ⊆ GSCONexp.

Proof. Follows directly from Lemmas 5.6 and 5.7 and the above discussion.
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5.2 A Quantum Analogue of NPSPACE

The motivation behind defining a quantum analogue of NPSPACE was to obtain a class that
contains GSCONexp and is potentially strictly contained in NEXP. We model this class as a
space-bounded version of QCMA, which we denote by QCMASPACE. We remark that there are
potentially multiple ways to define QCMASPACE, but argue any “sensible” definition with an
exponentially long classical proof equals NEXP.

The general idea for QCMASPACE is to allow the QCMA verifier to have exponentially many
gates and give it access to an exponentially long proof. The exponential proof size is somewhat
tricky since we do not want to have an exponential number of qubits. For this, we “stream” the
proof y to the verifier, which we implement by allowing the verifier to use gates Ui, where Ui will
be replaced by X if the yi = 1 and I otherwise. The gates Ui must be used in ascending order of i.
The circuits are then constructed by a polynomial-space Turing machine that writes the verifier’s
gates one after another to an auxiliary tape.

Definition 5.9 (QCMASPACE). Fix polynomials p(n) and q(n). A promise problem Π is in
QCMASPACE if there exists a polynomial-space uniform quantum circuit family {Qn} with the
following properties:

• Qn ∈ U
(
B⊗nA ⊗ B⊗q(n)C

)
. The register A is used for the input, and C contains the ancillae

initialized to |0⟩.
• Qn has the form Vt · · ·V1. Each Vi is either a 2-local gate from a universal set, or a proof gate
Uj with j ∈ [2p(n)]. Proof gates must occur in order. Formally, if Ui = Vj and Uk = Vl with
i < k, then j ≤ l.

• For y ∈ {0, 1}2p(n)

, we define Qyn by replacing each Ui with X if yi = 1 and I otherwise.
It must hold for all x ∈ {0, 1}n that

• if x ∈ Πyes, then ∃y ∈ {0, 1}2p(n)

: Pr[Qyn accepts |x⟩] ≥ 2/3, and
• if x ∈ Πno, then ∀y ∈ {0, 1}2p(n)

: Pr[Qyn accepts |x⟩] ≤ 1/3.

We observe that a PCP verifier (see Definition 2.25) can easily be simulated in QCMASPACE.

Theorem 5.10. QCMASPACE = NEXP.

Proof. The containment QCMASPACE ⊆ NEXP is trivial. To show NEXP ⊆ QCMASPACE, we
use the fact that NEXP = PCP[poly,poly] (see Theorem 2.27). We construct a QCMASPACE

verifier Q that simulates a PCP[r, q] verifier. Let T = 2poly(n) be an upper bound on the largest
proof bit index accessed by M .

1. Q generates the random string z ∈ {0, 1}r(n) by constructing a state |+⟩⊗r(n) and then
measuring it in standard basis. This can be done with the usual deferred measurement
technique (e.g., [51]) since r(n) is polynomial (it is nontrivial to simulate an exponential
number of measurements).

2. Q simulates the index computation of M and stores the indices i1, . . . , iq(n) in ancilla space.
3. For j = 1, . . . , T , Q applies Uj to an ancilla |0⟩c, which maps it to |yj⟩c. If j = ik for some k,

copy yj to a fresh ancilla. Afterwards, Uj is applied again to reset the ancilla c back to |0⟩c.
4. Simulate M with the stored proof bits to accept or reject.

Since the measured string z ∈ {0, 1}r(n) is distributed uniformly at random, we have

Pr[Qyn accepts |x⟩] = Pr
z
[M(x, y, z) = 1].
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Note that mapping |yj⟩c back to |0⟩c is no issue because the circuit is entirely classical after
generating the random string.

An alternative interpretation of Theorem 5.10 is that Savitch’s theorem [56], which implies
PSPACE = NPSPACE, has no quantum analogue because the space-bounded variant of BQP,
denoted BQUPSPACE, equals PSPACE, as shown by Fefferman and Lin [18]. BQUPSPACE is de-
fined as BQP with polynomial-space uniformly generated quantum circuits (i.e., like QCMASPACE

without a proof). Watrous [67, 65, 66] gave an earlier definition of BQPSPACE based on quantum
Turing machines. The main difference between these definitions is that the quantum Turing machines
may perform an exponential number of intermediate measurements, whereas that is not possible
with a BQUPSPACE verifier (the subscript ‘U’ indicates the verifier may only perform unitary
operations). The usual deferred measurement approach does not work because it requires fresh
ancillae for each measurement. Both definitions nevertheless equal PSPACE. Recently, Fefferman
and Remscrim [19] proved that even QMASPACE = PSPACE, where the QMASPACE verifier is
an exponentially long quantum circuit that receives a polynomially-sized proof and is allowed to
perform an unrestricted number of intermediate measurements. Hence, a variant of QCMASPACE

with exponentially long circuit, but only polynomially sized proof, would also equal PSPACE.

5.3 Span Traversal

Suppose we are given a GSCON instance, where l = 2, the starting state |ψ⟩ and the target state
|ϕ⟩ are ground states of H. To determine whether we have a yes-instance, we need to check whether
there exists a sequence of 2-local unitaries that maps |ψ⟩ to |ϕ⟩ but keeps the energy of intermediate
states low. Certainly, states in the span of |ψ⟩ and |ϕ⟩ are also ground states. Therefore, we have a
yes-instance if we can construct a unitary sequence, such that all intermediate states are sufficiently
close to Span (|ψ⟩, |ϕ⟩).

In this section, we show that we can indeed construct such a unitary sequence, provided we are
allowed to make it exponentially long. Our general approach for this is to perform the rotation from
|ψ⟩ to |ϕ⟩ in many small rotations and then decompose each small rotation into 2-local gates (see
[51]). Unfortunately, the decompositions known to us use gates like CNOT that bring intermediate
states potentially far from the span.

In this section, we derive a new (approximate) decomposition of a unitary U such that individual
gates are close to identity if U is close to identity (see Lemma 5.17). Afterwards, we discuss how
to apply this construction to GSCONexp, even when |ψ⟩ and |ϕ⟩ are not eigenvectors of H (see
Section 5.3.4).

5.3.1 Technical Lemmas

Lemma 5.11. For all x ∈ R, it holds that |1− eix| ≤ |x|.
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Proof.

|1− eix| = |1− cosx− i sinx|

=

√
(1− cosx)2 + sin2 x

=
√
cos2 x− 2 cosx+ 1 + sin2 x

=
√
2− 2 cosx

=

√
2− 2

(
1− 2 sin2

x

2

)
(cos(2x) = 1− 2 sin2(x))

= 2
∣∣∣sin x

2

∣∣∣
≤ |x| (|sin(x)| ≤ |x|)

Lemma 5.12. Let H ∈ Herm(Cd). For U = eiH , ∥U − I∥∞ ≤ ∥H∥∞.

Proof. Let H =
∑d
j=1 λj |ψj⟩⟨ψj | be the spectral decomposition of H. Then, the spectral decompo-

sition of U − I is given by

I − eiH =

d∑
j=1

|ψj⟩⟨ψj | −
d∑
j=1

eiλj |ψj⟩⟨ψj |

=

d∑
j=1

(
1− eiλj

)
|ψj⟩⟨ψj |.

Therefore,
∥I − U∥∞ = max

j

∣∣1− eiλj
∣∣ ≤ max

j
|λj | = ∥H∥∞,

where the inequality follows from Lemma 5.11.

Lemma 5.13. Let U = Um · · ·U1 and V = Vm · · ·V1 be unitary matrices. For a submultiplicative
norm ∥·∥, it holds that

∥U − V ∥ ≤
m∑
i=1

∥Ui − Vi∥.

Proof. This proof is similar to [51, Box 4.1]. We prove the lemma by induction on m. For the base
case m = 1 this is trivial. Now consider the case m > 1 and let U ′ = Um−1 . . . U1, V

′ = Vm−1 . . . V1.

∥U − V ∥ = ∥UmU ′ − VmV ′∥
= ∥UmU ′ − VmU ′ + VmU

′ − VmV ′∥ (add 0 = −VmU ′ + VmU
′)

= ∥UmU ′ − VmU ′∥+ ∥VmU ′ − VmV ′∥ (triangle inequality)

= ∥(Um − Vm)U ′∥+ ∥Vm(U ′ − V ′)∥
= ∥Um − Vm∥+ ∥U ′ − V ′∥ (submultiplicativity)

= ∥Um − Vm∥+
m−1∑
i=1

∥Ui − Vi∥ (inductive hypothesis)

=

m∑
i=1

∥Ui − Vi∥
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Lemma 5.14 (Suzuki). Let H =
∑m
j=1Hj be a sum of Hermitian operators such that

m∑
j=1

∥Hj∥∞ ≤ t ≤ 1

and n ∈ N. Then

eiH =

 m∏
j=1

eiHj/n

n

+O

(
t2

n

)
.

Proof. Follows directly from [58, Theorem 3].

This lemma can also be used for Hamiltonian simulation, for if H is a k-local Hamiltonian, then
the eiHj/n terms are k-local gates. Therefore, we can simulate the evolution eiH with only local
gates. We can reduce the statement to the Lie-Trotter product formula

eiH1+iH2 = lim
n→∞

(
eiH1/neiH2/n

)n
.

5.3.2 Decomposition of Pauli Interactions

Next, we show how to decompose operators eitH for H ∈ {I,X, Y, Z}⊗n into 2-local gates of the
form eitjHj , such that the total evolution time

∑
j |tj | is bounded by O(t1/n). This result is due to

Clinton, Bausch, and Cubitt [15].1 2 The main insight we use in the decomposition is as follows.

Lemma 5.15 ([15, Lemmas 6 and 8]). Let U = eitH for a Hamiltonian H = 1
2i [h1, h2], where h1

and h2 anti-commute and square to identity. For 0 ≤ t ≤ π/2, there exist t1, t2 ∈ R with

|t1|+ |t2| ≤
√
2t,

and
U = eit1h1eit2h2eit2h1eit1h2 .

We can also use Lemma 5.15 with negative t ≥ −π/2 by applying the lemma to −t and then
using the inverse of the resulting decomposition ((eitH)† = e−itH).

To apply this to Pauli interactions, we observe that X,Y, Z pairwise anti-commute, square to
identity, and

[X,Y ] = 2iZ, [X,Z] = 2iY, [Y,Z] = 2iX. (5.1)

Hence, we can apply Lemma 5.15 to decompose eitH for n = 2k + 1 and

H = P1 ⊗ · · · ⊗ Pn ∈ {I,X, Y, Z}⊗n

into two 2k−1 + 1 local evolutions as follows. Let j = 2n−1 + 1, assume Pj = Z, and set

h1 = P1 ⊗ · · · ⊗ Pj−1 ⊗Xj ⊗ Ij+1,...,n,

h2 = I1,...,j−1 ⊗ Yj ⊗ Pj+1 ⊗ · · · ⊗ Pn.
1We give here an alternative construction of the decomposition (still using Lemmas from [15]), since we were not

able verify the correctness of the proof sketch given for [15, Equation 17].
2We thank Rolando Somma for pointing us to this reference.
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Then,

[h1, h2] = P1 ⊗ · · · ⊗ Pj−1 ⊗XYj ⊗ Pj+1 ⊗ · · · ⊗ Pn
− P1 ⊗ · · · ⊗ Pj−1 ⊗ Y Xj ⊗ Pj+1 ⊗ · · · ⊗ Pn

= P1 ⊗ · · · ⊗ Pj−1 ⊗ [X,Y ]j ⊗ Pj+1 ⊗ · · · ⊗ Pn,
= 2iH.

The cases Pj = X or Pj = Y are analogous due to (5.1). The decomposition is depicted in Figure 5.1
(tensor products between the Pauli operators are omitted for conciseness).

2k−1 ...

eitP1···Pj−1ZPj+1···Pn =

eit1P1···Pj−1X eit2P1···Pj−1X

eit2Y Pj+1···Pn eit1Y Pj+1···Pn

2k−1 ...

Figure 5.1: Decomposition of Pauli interactions.

For n ≠ 2k+1, we cannot always choose the split j to be exactly in the middle, but the resulting
interactions will still be at most (2k−1 +1)-local, provided n ≤ 2k +1. Applying this decomposition
recursively we show:

Lemma 5.16. Let H ∈ {I,X, Y, Z}⊗n with n ∈ (2k−1 + 1, 2k + 1], and t ∈ R with 8|t|2−k ≤ π/2.
There exists a decomposition of eitH = Πmj=1e

itjHj , where the Hj are 2-local Pauli matrices,
m ≤ 4k = O(n2), and

∑m
i=1 |ti| = O(n2|t|2−k

) = O(|t|1/2n).

Proof. We construct the 2-local H1, . . . ,Hm by applying Lemma 5.15 recursively as outlined above.
eitH = Πmj=1e

itjHj follows from the correctness of Lemma 5.15. After each recursion, we have
interactions that are at most (2k−1 + 1)-local. Hence, after k recursions, only 2-local interactions
remain and we are done. Since each recursion increases the number of interactions by a factor of 4,
we have m ≤ 4k = O(n2).

By Lemma 5.15, a recursion constructs new interactions, each with a pulse time of at most

|t1|+ |t2| ≤
√
2t.

This gives us a recurrence for an upper bound on the individual pulse times after r recursions:

T (r) =

|t|, if r = 0√
2T (r − 1), if r > 0

.
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Using induction on r, we show that

T (r) = 21−2−r |t|2−r

.

For r = 0, we have T (0) = |t|. For r > 0, we have

T (r) =
√

2T (r − 1)

=
(
2 · 21−2−r+1 |t|2−r+1

)1/2
= 21/2 · 21/2−2−r |t|2−r

= 21−2−r |t|2−r

.

Hence, the individual pulse times after k recursions are bounded by T (k) ≤ 8|t|2−k

. The total pulse
time is then bounded by mT (k) = O(n2|t|1/2n).

Remark. Our decomposition only uses polynomially many gates, whereas it appears to us that
the construction sketched in [15] uses exponentially many. This might be of interest for physical
applications. We also only require their Lemmas 6 and 8, without having to use the more complex
Lemmas 7 and 9. Their decomposition has a total pulse time of O(|t|1/n).

5.3.3 General Decomposition

Next, we show how to use Lemma 5.16 to decompose general unitaries.

Lemma 5.17. Let U = eiH for Hermitian H ∈ Herm(Cd), d = 2n with

∥H∥∞ =: ε < cn := (π/16)2n.

There exists an approximate decomposition

U = Um · · ·U1 +O
(
d3ε2

)
into m ≤ 2O(n) 2-local unitaries, such that

m∑
j=1

∥I − Uj∥∞ = O
(
n2d2ε1/2n

)
(5.2)

Proof. We write H in the Pauli basis:

H =

d2∑
j=1

αjPj ,

where αj ∈ R and Pj ∈ {I,X, Y, Z}⊗n for all j ∈ [d2]. By viewing H as the sum of orthogonal
vectors with ∥Pj∥F =

√
d, we get

∥H∥F =

√√√√d

d2∑
j=1

α2
j ≤
√
d∥H∥∞, (5.3)
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where the inequality follows from Lemma 2.7. Therefore, |αj | ≤ ε for all j ∈ [d2]. It holds that

d2∑
j=1

∥αjPj∥∞ =

d2∑
j=1

|αj |

≤ d

√√√√ d2∑
j=1

α2
j (apply Lemma 2.5)

≤ d∥H∥∞ (apply (5.3))

≤ 1.

By Lemma 5.14,

U = eiH =

d2∏
j=1

eiαjPj +O
(
d3ε2

)
.

Lemma 5.16 allows us to decompose each term eiαjPj into mj = O(n2) 2-local unitaries

eiαjPj =

mj∏
k=1

eitj,kHj,k

with an evolution time of
∑mj

k=1|tj,k| = O(n2|αj |1/2n). We get the complete decomposition

U = eiH =

d2∏
j=1

mj∏
k=1

eitj,kHj,k +O(d3ε2),

with a total evolution time of

O

 d2∑
j=1

|αj |1/2n
 = O

(
n2d2ε1/2n

)
.

(5.2) follows from Lemma 5.12 as

∥I − eitj,kHj,k∥∞ ≤ ∥tj,kHj,k∥∞ = tj,k.

We remark, that we usually choose ε ≪ cn in order to make (5.2) small. Furthermore, the
above decomposition is approximate. It appears to be an open question whether a similar result is
achievable with an exact decomposition.

We can use this decomposition to map between two close vectors |ψ⟩ and |ϕ⟩ while bounding
the distance of intermediate states from |ψ⟩. Although we do not use this construction, it may still
be of independent interest. Since the error scales as O(ε2), we can use it to map a quantum state
along any continuous path with an arbitrarily small error (at the cost of more gates).

Lemma 5.18. Let |ψ⟩, |ϕ⟩ ∈ Cd with d = 2n. Let ∥|ψ⟩ − |ϕ⟩∥2 ≤ ε < cn. There exists a sequence
of 2-local unitaries U = Um · · ·U1 with m ≤ 2poly(n), such that

(1) ∥|ϕ⟩ − U |ψ⟩∥2 = O(d3ε2), and
(2) for all i ∈ [m], ∥|ψ⟩ − Ui · · ·U1|ψ⟩∥2 = O(n2d2ε1/2n).
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Proof. Let θ = cos−1 Re(⟨ψ|ϕ⟩) be the angle between |ψ⟩ and |ϕ⟩. After a suitable change of basis
W , we have

W |ψ⟩ = |0⟩,
W |ϕ⟩ = cos(θ)|0⟩+ sin(θ)|1⟩.

Hence, we only need to apply the rotation matrix R(θ) (extended to d dimensions as in (5.4))
to map from W |ψ⟩ to W |ϕ⟩. Let V = W †R(θ)W . V has the same eigenvalues as R(θ), namely
eiθ, e−iθ, 1. Hence, V = eiH for ∥H∥∞ = |θ|.

To apply Lemma 5.17, we need to bound θ. We have for |θ| < 1,

∥|ψ⟩ − |ϕ⟩∥2 =
√
2− 2Re(⟨ϕ|ψ⟩) (apply Lemma 2.6)

=
√
2− 2 cos θ

≥
√
θ2 − θ4/12 (Taylor expansion)

≥ |θ|/2.

Hence, |θ| ≤ 2ε. Let U = Um · · ·U1 from Lemma 5.17. (1) and (2) follow from Lemma 5.13.

5.3.4 Application to GSCONexp

We now use Lemma 5.17 to construct a sequence of unitaries to map from the starting state |ψ⟩ to
the target state |ϕ⟩ while remaining in low energy space.

Theorem 5.19. Let H ∈ Herm
(
Cd
)
, d = 2n with 0 ≼ H ≼ I, |ψ⟩, |ϕ⟩ ∈ Cd with ⟨ψ|H|ψ⟩ ≤ η

and ⟨ϕ|H|ϕ⟩ ≤ η. For ∆ ≥ 2− poly(n), there exists a sequence of 2-local unitary gates U = Um · · ·U1

with m ≤ 2poly(n) such that
(1) ∥U |ψ⟩ − |ϕ⟩∥2 ≤ ∆, and
(2) for all i ∈ [m], ⟨ψi|H|ψi⟩ ≤ η +∆, where |ψi⟩ := Ui · · ·U1|ψ⟩.

Proof. The idea is to first rotate |ψ⟩ onto a ground state |µ⟩ and then use the same method to
rotate |µ⟩ to |ϕ⟩. This will leave all intermediate states at an energy below η (in practice it might
exceed η since the construction is approximate). Let |λ1⟩, . . . , |λd⟩ be an orthonormal eigenbasis of
H. We assume |µ⟩ = |λ1⟩ is a ground state. We can write

|ψ⟩ = cos(θ)|µ⟩+ sin(θ)|ν⟩,

where |ν⟩ ∈ Span (|λ2⟩, . . . , |λd⟩).
We argue that increasing the amplitude on |µ⟩ and decreasing the amplitude on |ν⟩ cannot

increase the energy. Let |ψ′⟩ = cos(θ′)|µ⟩+ sin(θ′)|ν⟩ with |cos θ′| > |cos θ|. Then, for λ = λmin(H),

⟨ψ|H|ψ⟩ = cos2(θ)λ+ sin2(θ)⟨ν|H|ν⟩
= cos2(θ)λ+ (1− cos2(θ))⟨ν|H|ν⟩
< cos2(θ′)λ+ (1− cos2(θ′))⟨ν|H|ν⟩ (λ ≤ ⟨ν|H|ν⟩)
= ⟨ψ′|H|ψ′⟩.

To rotate |ψ⟩ to |µ⟩, we can apply a rotation matrix V =W †R(α)W t times, where W is a suitable
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change of basis matrix, and R(α) is the rotation matrix extended to d dimensions with α := −θ/t:

R(α) =


cosα − sinα

sinα cosα
0

0 I

 (5.4)

Therefore, V has the eigenvalues eiα, e−iα, 1 and we have V = eiH with ∥H∥∞ ≤ |α| = ε = O(1/t).
It further holds that ⟨ψj |H|ψj⟩ ≤ η for j ∈ [t], |ψj⟩ := V j |ψ⟩, and |µ⟩ = |ψt⟩.

Choosing a sufficiently large t = poly(d), Lemma 5.17 gives us a decomposition V = Um · · ·U1 +

O(d3ε2) with
m∑
j=1

∥I − Uj∥∞ = O
(
n2d2ε1/2n

)
=: γ (5.5)

for m ≤ 2poly(n).
Let V ′ := Um · · ·U1 and |ψ′

j⟩ := V ′j |ψ⟩. Due to Lemma 5.13, for all j ∈ [t],

∥|ψj⟩ − |ψ′
j⟩∥2 = O(jd3ε2) = O(d3ε) =: δ.

Then since ∥H∥∞ ≤ 1,

⟨ψ′
j |H|ψ′

j⟩ = ⟨ψ′
j |H|ψj⟩+ ⟨ψ′

j |H
(
|ψ′
j⟩ − |ψj⟩

)
= ⟨ψj |H|ψj⟩+

(
⟨ψ′
j | − ⟨ψj |

)
H|ψj⟩+ ⟨ψ′

j |H
(
|ψ′
j⟩ − |ψj⟩

)
≤ η + 2δ

For |ψ′
j,k⟩ := Uk · · ·U1|ψ′

j⟩, we have due to Lemma 5.13 and (5.5)

∥|ψ′
j,k⟩ − |ψ′

j⟩∥2 ≤ γ,

and by the triangle inequality
∥|ψ′

j,k⟩ − |ψj⟩∥2 ≤ γ + δ.

Choosing t such that γ + 2δ ≤ ∆, we satisfy (1) and (2) while mapping |ψ⟩ to |µ⟩.
We complete the proof by applying the inverse of the above construction, but for |ϕ⟩ to |µ⟩.

This increases the error terms by a factor of 2. Hence, we choose t such that 2γ + 4δ ≤ ∆.

Note that the theorem easily generalizes to any 0 ≼ H ≼ 2poly(n)I. We further remark that our
small pulse time decomposition really is crucial for this result since R(α) and W are not 2-local in
general. Thus, the usual decompositions would introduce gates with large pulse times that could
bring intermediate states far from the span.

5.3.4.1 Relation to the 1-Local Case

We have seen that any GSCONexp instance becomes either a yes-instance or an invalid instance if
we make m sufficiently large. It is not obvious to us whether something similar is possible for l = 1

(i.e., only 1-local unitaries can be applied). Of course, we cannot decompose arbitrary rotations into
1-local unitaries. This raises the question whether the l = 1 case is PSPACE-hard for unbounded
m. Also, is it still contained in PSPACE?
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This apparent difference between l = 1 and l = 2 really seems to be due to the continuous state
space in the quantum setting. Allowing k bitflips in each step of S, T -CONN (i.e., the Hamming
distance in each step is allowed to be k), does not change the power of S, T -CONN: Given boolean
formula ϕ, we can construct ϕ′ by adding k− 1 additional copies of each variable and constraints to
verify that all k copies have the same value. Then, going from one satisfying assignment to another
requires at least k bitflips, because all copies of a variable need to be changed.

5.3.4.2 Relation to the Traversal Lemma

Gharibian and Sikora [25] use the Traversal Lemma as an important tool to show that GSCON is
QCMA-complete. Two states |u⟩, |w⟩ ∈ B⊗n are said to be k-orthogonal if for all k-local unitaries
U , we have ⟨w|U |v⟩ = 0. Two subspaces S, T ⊆ B⊗n are called k-orthogonal if any pair of vectors
|v⟩ ∈ S, |w⟩ ∈ T is k-orthogonal.

Lemma 5.20 (Traversal Lemma [25]). Let S, T ⊆ B⊗n be k-orthogonal subspaces. Let |v⟩ ∈
S, |w⟩ ∈ T and consider a sequence of unitaries U1, . . . , Um with

∥|w⟩ − Um · · ·U1|v⟩∥2 ≤ ε < 1/2.

Let |vi⟩ := Ui · · ·U1|v⟩ and P := I −ΠS −ΠT . Then, there exists an i ∈ [m] such that

⟨vi|P |vi⟩ ≥
(
1− 2ε

2m

)2

.

Gharibian and Sikora provide an example for which the Traversal Lemma is tight by explicitly
constructing a gate sequence to map |000⟩ to |111⟩ with ⟨vi|P |vi⟩ ≤ ∆ for m = O(1/∆2).

Our Theorem 5.19 constructs such a sequence in general, although it is not as tight, because m
is only polynomial in ∆−1 and exponential in n.
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