
B A C H E L O R T H E S I S

D E C O N TA M I N AT I N G P L A N A R R E G I O N S W I T H
F I N I T E AU T O M AT O N R O B O T S A N D T I L E S

dorian rudolph

Supervisor

Prof. Dr. Christian Scheideler

Department of Computer Science
Theory of Distributed Systems

18. September 2018



Dorian Rudolph: Decontaminating Planar Regions With Finite Automaton Robots and
Tiles, © 18. September 2018

supervisor:
Prof. Dr. Christian Scheideler

reviewers:
Prof. Dr. Christian Scheideler
Prof. Dr. Friedhelm Meyer auf der Heide

matriculation number:
7047011

time frame:
24. May 2018 — 24. October 2018



A B S T R A C T

We consider the problem of decontaminating nanoscale regions using robots. These
regions are modeled as finite induced subgraphs of the triangular lattice graph and
are assumed to be contaminated by an arbitrarily fast spreading contaminant. Finite-
state automaton robots are tasked with decontaminating the environment by moving
a set of hexagonal tiles across it, which are able to block the contaminant. We develop
algorithms for decontaminating several classes of environments and consider the
number of tiles needed in comparison to the optimum as well as their runtime. For
parallelograms, we are able to achieve that optimum. We achieve approximation
factors of O(1) for convex environments, O(log n) for n-node environments without
holes, and O(

√
n) for environments with holes fitting inside a hexagon of radius

O(
√

n). We show that the runtime of these algorithms can be improved linearly
in the number of robots. We further prove that the problem of determining the
minimum number of tiles sufficient for decontamination is NP-hard.

A related problem is the decontamination of polygonal environments by sweeping
them with barrier curves. The contaminant is assumed to spread instantly along
all paths not blocked by a barrier. The sweepwidth of a polygon is defined as the
minimum over the maximum total length of barriers during a decontamination
sweep. Computing sweepwidth for a given polygon is known to be NP-hard.
We develop approximation algorithms for computing sweepwidth of an n-vertex
polygon, achieving an approximation factor of O(1) for convex polygons in O(n)
time, O(log n) in O(n) for simple polygons, O(log n) in O(n14 log4 n) and O(

√
n) in

O(n log4 n) for complex polygons. Further, we define a class of polygons consisting
of aligned squares attached to each other in a tree-like fashion and provide an
O(1) approximation algorithm for sweepwidth in O(n3 log n) time. These algorithms
construct decontamination sweeps explicitly.

iii





A C K N O W L E D G M E N T S

I would like to thank Lorena Rudolph, Nils Loose, and Kristian Hinnenthal for
proofreading and my supervisor Christian Scheideler for helpful discussions.

v





C O N T E N T S

1 Introduction 1

1.1 Motivation 1

1.2 Models 2

1.2.1 Robot Model 2

1.2.2 Geometric Model 4

1.2.3 Graph Model 5

1.3 Related Work 6

1.4 Our Contribution 7

2 Decontamination of Polygons 9

2.1 Optimal Sweeps 9

2.2 Convex Polygons 10

2.3 A Class of Polygons with an O(1) approximation 12

2.3.1 Square-tree Polygons and Weighted Node Search 12

2.3.2 Constructing a Decontamination Sweep 14

2.4 Simple Polygons 16

2.4.1 Medial Axis 16

2.4.2 Constructing a Decontamination Sweep 20

2.5 Complex Polygons 21

2.5.1 Rasterization 22

2.5.2 Computing Node-search Strategies 27

2.5.3 Polygon Compression 28

2.5.4 Faster Algorithm 31

3 Decontamination in the Robot Model 33

3.1 Convex Environments 33

3.1.1 Parallelograms 34

3.1.2 Triangles and Trapezoids 39

3.1.3 Pentagons and Hexagons 41

3.2 Simple Environments 41

3.3 Complex Environments 47

3.4 Complexity 52

4 Conclusion 57

4.1 Evaluation 57

4.2 Future Work 58

Bibliography 59

vii



L I S T O F F I G U R E S

Figure 1 Example of a connected configuration. 3

Figure 2 Incomplete sweep of a polygon. 5

Figure 3 Decontamination sweep of an L-polygon. 10

Figure 4 Decontamination sweep of a T-polygon. 10

Figure 5 Inscribed and circumscribed rectangle of convex polygon. 11

Figure 6 Square-tree polygon. 13

Figure 7 Medial axis of a simple polygon. 17

Figure 8 Partitioning a polygon based on the medial axis. 18

Figure 9 Visualization of the proof that no edge of the medial axis can
cross the line segment connecting a node to one of its closest
points on the polygon’s outline. 19

Figure 10 Polygon rasterized into a hexagonal grid. 23

Figure 11 Redefining cells between outermost blocked cells of an edge
pair as empty. 24

Figure 12 Blocked cells between two polygon edges when rasterizing
the polygon into a hexagonal grid. 24

Figure 13 Visualization of the fact that paths of empty cells starting in a
full cell and connecting different edges are close to a blocked
node. 24

Figure 14 Connected components of full cells separated by blocked
cells. 25

Figure 15 Illustration of polygon compression. 28

Figure 16 Modeling the area between two edges in a compressed interval
as two conjoined rectangles 30

Figure 17 Convex shapes in the triangular grid graph defined as the
inside of an intersection of lines. 34

Figure 18 Decontaminating a parallelogram by sweeping it with a line
of tiles. 35

Figure 19 Preliminary steps before sweeping the parallelogram. 36

Figure 20 Constructing a line with multiple robots. 38

Figure 21 Moving a line across the parallelogram with multiple robots. 39

Figure 22 Decontaminating a triangle by sweeping it with a line of
tiles. 40

Figure 23 Subdividing pentagons and hexagons into triangles, parallel-
ograms, and trapezoids. 41

Figure 24 Layers in a simple environment. 42

Figure 25 Barriers in a complex environment. 47

Figure 26 Building a barrier at a specific x-coordinate in a complex
environment. 50

Figure 27 Measuring the width of an environment using lines in differ-
ent directions. 52

viii



Figure 28 Constructing an environment from a planar graph via an
orthogonal drawing. 53

L I S T O F TA B L E S

Table 1 Summary of algorithms for computing the sweepwidth of a
polygon. 7

Table 2 Summary of algorithms for decontaminating environments
with robots. 8

ix





1
I N T R O D U C T I O N

Suppose some environment becomes contaminated. It is not difficult to think of many
examples in the real world, e. g., virus infections or cancerous cells inside the human
body, water contaminated with oil, radioactive material inside a nuclear reactor,
tools coated with a corrosive substance after use, and cleaning up after accidents. In
many situations, the environment is dangerous or impossible to access for humans.
Therefore, using robots for decontamination is an attractive proposition, which we1

investigate in this thesis.
We will begin this introduction by describing the motivation behind this research.

Next, we introduce the formal models used in this thesis and describe related work,
outlining what research has been done in our models and which other models exist.
Finally, we give a brief overview of our results.

1.1 motivation

We already gave some examples where decontamination is a relevant problem. More
specifically, we will consider this problem in the context of nanorobotics. This is
motivated by significant progress in nanorobotics in recent years and its potential
significance in various fields such as medicine and electronics. Many situations
where decontamination is necessary are in the nanoscale (e. g., surgical operations
inside the human body), hence requiring sufficiently small robots. In the future,
nanorobots could even become attractive for larger scale operations due to a high
degree of flexibility, provided the development of adequate manufacturing processes.

Here, we restrict ourselves to two-dimensional environments. They already offer a
variety of potential applications and allow for the usage of techniques that might
not be applicable in higher dimensions. Moreover, we believe it is important to
understand the two-dimensional case before considering three (or maybe even higher)
dimensions. In this thesis, we develop a theoretical model for decontamination, as
well as algorithms in that model to perform decontamination.

Many models have been developed for nanorobots and nanomatter. Our model is
based on a model for hybrid programmable matter, introduced by Gmyr et al. [16],
consisting of active robots interacting with passive tiles. Tiles and robots inhabit the
nodes of a triangular lattice graph. Related models often make use of only active
elements. In practice, passive elements might be significantly cheaper to manufacture
than active elements. Thus, both active and passive elements are present in our
model. It is likely that nanorobots will only have limited computational capabilities.
We therefore choose to implement robots as finite automata, i. e., they only have
a finite number of states and need to compute their actions based on their state
together with local information.

1 As customary in scientific writing, the pronoun we is used despite this thesis having only a single
author.

1



2 introduction

The general idea of our model is that an environment is defined by a finite induced
subgraph of the triangular lattice graph, which is initially considered to be fully
contaminated. The robots’ goal is now to remove the contaminant from the environ-
ment entirely, thereby performing decontamination. We assume the contaminant to
spread arbitrarily fast (e. g., a gas or an intruder much faster than the robots). The
robots therefore need to be able to block off already decontaminated regions to avoid
immediate recontamination. To that end, they build barriers from tiles. We will try to
minimize the number of tiles as well as the time needed to perform decontamination.
Also, we will look at how this process can be sped up using multiple robots.

In the described model, the environment is essentially a polygon, as it is made up
of tiles located on the lattice graph. This leads to a similar, purely geometric problem
with the goal of decontaminating a polygon by sweeping it with a set of barrier curves,
introduced by Karaivanov et al. [22]. They prove that calculating the minimal total
curve length needed is NP-hard. We will develop approximation algorithms to
compute sweeps in polynomial time.

1.2 models

We make use of three different, yet related models. First, we state the model targeting
discrete robots and tiles. When using discrete tiles to decontaminate an environment,
the intuitive approach is to build barriers. This lends itself particularly well to a
geometric setting where a polygon is to be decontaminated using barrier curves. A
similar problem has also been studied on graphs, in literature usually referred to as
a search game (e. g., [24]). We will introduce variants called node searching and edge
searching.

1.2.1 Robot Model

First, we present the model aimed at representing nanorobots. The following de-
scriptions are adapted from [15] and extended by adding the restriction to a finite
environment and a notion of (de)contamination.

We define the environment E as the graph induced by a finite set of connected
nodes of the infinite triangular lattice graph. Nodes with a degree of less than six
shall be denoted as border nodes. E is inhabited by a finite set of active agents (the
robots) and passive hexagonal tiles. Robots and tiles occupy exactly one node. Each
node may be occupied by at most one robot and one tile. Robots also have the ability
to carry tiles. Carried tiles are not considered to occupy a node. We refer to nodes
occupied by a tile or a robot carrying a tile as tiled.

Next, we will formally introduce the notions of holes and outlines. Let G be the
graph induced by the set of nodes of the grid graph not belonging to E and G1, . . . , Gk
its connected components. Exactly one Gi is infinite and corresponds to the outside
of E . Each finite Gi defines a hole in E . We call E simple if it has no holes. For each Gi,
there exists a unique (not necessarily simple) cycle Ci of all border nodes adjacent to
Gi, obtained by traversing the polygon separating hexagons of E from hexagons of
Gi (see black lines in Figure 1). We will refer to Ci as an outline.



1.2 models 3

N
NE

SE
S

SW

NW

Figure 1: A connected configuration (tiles as blue hexagons, robots as black circles, environ-
ment graph as gray lines and its outlines as black polygon, contamination as red
area). Removing any tile would lead to immediate recontamination of the adjacent
area.

A configuration consists of the positions of tiles and robots. It is considered connected
if all connected components of the graph induced by tiled nodes contain a border
node, and all robots are located on a border node, a node containing a tile, or are
adjacent to a node containing a tile. We require the configuration to remain connected
throughout the execution. See Figure 1 for an example of a connected environment.
The idea behind connectivity is that robots and tiles might be floating on a liquid. As
such, they should always form a connected structure together with the environment’s
outline and not “float freely”.

Each robot acts as a deterministic finite automaton, which is shared by all robots,
and operates in look-compute-move cycles. In the look phase, the robot can observe
the node it occupies and its neighbors. In case of border nodes, it can determine
which neighbors are accessible, i.e., part of E . For each adjacent node, it can detect
whether it is occupied by a tile or a robot, and, in the latter case, the current state of
that robot, including whether it carries a tile. Note that robots are not able to detect
whether a node is contaminated, since this would not always be possible in a real
context, where the contaminant might not spread throughout the entire environment
or could also just be a single intruder, for example. In the compute phase, the robot
can use information from the look phase together with its state to determine its
next move. It may further change its own state and the state of all robots at adjacent
nodes. In the move phase, the robot can either take a tile from its current node, place
a tile it is carrying at that node, move to an adjacent node while possibly carrying a
tile with it, or pass a tile it is carrying to a neighboring robot that does not yet carry
a tile. Each robot can carry at most one tile.

We do not require a robot to know its global orientation, but to be able to main-
tain its relative orientation with respect to its original orientation. Furthermore,
robots share a common chirality, i. e., an understanding of what a clockwise (or
counterclockwise) rotation is.



4 introduction

We assume the standard asynchronous model from distributed computing in
which robots are activated in an arbitrary sequence of activations. Whenever a robot is
activated, it performs exactly one look-compute-move cycle before the next robot
is activated. We measure the time complexity of our algorithms in the number of
rounds, where a round is over whenever each robot has been activated at least once.

Initially, all non-tiled nodes in E are contaminated. If a robot carrying a tile moves
onto a contaminated node, that node will be decontaminated. After each activation,
all nodes reachable from contaminated nodes via paths containing no tiled nodes
will be contaminated as well. Figure 1 shows an example of a partially contaminated
configuration. The goal is that once the robots have terminated, all tiles should be
decontaminated. We seek to minimize the number of tiles required to decontaminate
E , td(E), as well as the number of rounds. Note that in the context of td(E), robots
are allowed to be constructed specifically for E . It is therefore possible that no robot
can decontaminate all environments E with td(E) tiles.

1.2.2 Geometric Model

The outlines of the environment in the previous model as seen in Figure 1 already
indicate how such an environment may be viewed as a polygon. In this section, we
look at how to decontaminate a polygon by sweeping it with barrier curves. To that
end, we define what a sweep of a shape is and state some existing results from [22].
Intuitively, one can think of these curves as barriers restricting the contaminant. By
moving these barriers closer together, we gradually reduce the area wherein the
contaminant remains until the shape is fully decontaminated.

The following definitions are adapted from [22]. Let S ⊂ R2 be a compact, path-
connected region, i. e., S is a closed and bounded subset of the Euclidean plane such
that for any two points p, q ∈ S, there exists a continuous function f : [0, 1]→ S with
f (0) = p, f (1) = q. We refer to such a function as a path or curve, depending on the
context. Since we are only interested in polygons, S will always be the set of points
on a finite non-self-intersecting closed polygon, i. e., a polygon with a finite amount
of vertices whose boundary does not cross itself. It is obvious that S is compact and
path-connected for these polygons. Initially, S is considered contaminated.

We sweep S using a set of moving barrier points b : [0, 1]→ 2S. The barrier points
b(t) are decontaminated at time t. A decontaminated point q becomes recontaminated
if there exists a path from a contaminated point p not intersecting b(t). In order to
define when a region S is decontaminated by a sweep b, it is more convenient to
think of the contaminant as an arbitrarily fast moving intruder we want to catch
that cannot jump over the barriers. Therefore, S is decontaminated if and only if
for every continuous curve σ : [0, 1] → S and continuous non-decreasing function
τ : [0, 1] → [0, 1] with τ(0) = 0 and τ(1) = 1, there exists some t0 ∈ [0, 1] such that
σ(t0) is part of a barrier in b(τ(t0)). Think of σ as the path the intruder takes in
trying to evade our barriers. Instead of moving arbitrarily fast, we can also imagine
the intruder to be able to change the movement speed of the barriers, possibly to a
temporary standstill, i. e., the barriers are at b(τ(t)) when the searcher is at σ(t). t0

would then correspond to the point in time when the intruder is caught.
We restrict barriers to piecewise continuously differentiable barrier curves. This

allows us to describe a sweep by a function b : [0, 1]2 → S such that b(s, t) is piecewise



1.2 models 5

Figure 2: Incomplete sweep of a polygon (red area contaminated, barriers blue).

continuous in both curve parameter s and time t, and for any t, b(·, t), is piecewise
continuously differentiable. Therefore, we can measure the total length of barriers at
time t as the sum of the arc lengths of all pieces. b(·, t) consists of possibly multiple
piecewise continuously differentiable curves, each representing a barrier at time t.
The bottleneck length of b is defined as the supremum over all lengths of b(·, t). An
exemplary sweep is depicted in Figure 2.

We refer to the minimum bottleneck length of a decontamination sweep of S as
sweepwidth of S, denoted sw(S). Generally, we will seek to find a decontamination
sweep whose minimum bottleneck length is as close to sw(S) as possible.

1.2.3 Graph Model

In this section, we define the node/edge searching game as introduced in [24]. The
following definitions are adapted from there.

We start off with the edge searching game. Let G be an undirected graph. Initially,
all edges of G are considered contaminated. A set of searchers, each of which can be
placed onto at most one node of G, will be used to decontaminate the graph. Nodes
may contain multiple searchers. A strategy S consists of a sequence of moves of the
following types:

(a) Placing a searcher, which is not on a node, onto a node.
(b) Sliding a searcher from a node along an edge.
(c) Removing a searcher from a node.
An edge e is cleared (or decontaminated) by sliding a searcher along that edge. A

node is considered guarded while there is a searcher on it. It remains clear as long as
there is no unguarded path (i. e., a path of unguarded nodes) from e to a contaminated
edge. Once such a path emerges after a move, e is recontaminated.

Note that if e is the only contaminated edge incident to a node v, a searcher may
be slid along e from v without causing recontamination. Otherwise, an additional
searcher on v would be needed to prohibit immediate recontamination.

The decontamination (or search) is complete once all edges are decontaminated.
The maximum number of searchers placed onto G at the same time is referred to as
the edge-search number of S , or es(G,S). A strategy S∗ clearing (or decontaminating) G
is optimal if its edge-search number is minimal among all such strategies. We set
es(G) := es(G,S∗) the edge-search number of G.



6 introduction

Similarly, we define the node searching game with the difference that only moves
(b) and (c) are allowed and edges are decontaminated when there is a searcher on
both incident nodes. The node-search number ns is defined analogously to es.

1.3 related work

As previously mentioned, there exist various models aimed at nanoscale computing.
In tile self-assembly [34], semi-passive tiles attach to each other following certain
rules growing into larger structures. Other models consider sets of only active
agents [9, 21, 39], cooperating to solve problems such as shape formation. Especially
the amoebot model by Derakhshandeh et al. [9] is quite similar to our robot model,
the main difference being that ours also includes passive agents. In our robot model,
shape formation [15, 16] and recognizing certain side ratios of a parallelogram [17]
have been explored. Note that we restrict ourselves to finite environments whereas
previous work operated on an infinite triangular lattice graph.

A very similar problem to ours is investigated by Dereniowski and Urbańska
[12]. They give a distributed monotone connected online strategy for searching
an unknown partial grid with n nodes using O(

√
n) searchers and prove that in

their model, any algorithm can be forced to use Ω(
√

n) searchers when O(log n)
searchers would be optimal for an offline strategy. Note that the choice of partial
grids in comparison to our environments is arbitrary as mutual embeddings are
trivial. The key difference lies in the restriction to monotone connected strategies, i.e.,
the decontaminated area must be connected and recontamination is disallowed since
that largely prevents exploration of the environment. Hence, their competitiveness
lower bound of Ω(

√
n/ log n) does not translate to our model. Their algorithms

require the memory of each searcher to be polynomial in the network size, whereas
we are restricted to constant memory in our agents.

Various related problems are also discussed by Altshuler et al. [1]. They begin
by analyzing a cooperative cleaning protocol for a static observable contaminant
in the infinite grid graph, i. e., the contaminant does not spread and robots can see
which tiles are contaminated. They also consider expanding contaminants, either
deterministically over time or according to a stochastic process, and give lower
bounds for the number of agents needed to clean certain regions. A similar problem
using two-dimensional cellular automata has been explored in [8]. This differs
from our model where recontamination happens instantly. Lastly, they look at the
cooperative hunters problem where a number of drones equipped with GPS and
sensors of limited range seek to find a set of evading targets. Note that evading
targets with limited maximum velocity are similar to contaminated areas that expand
over time.

While we only consider the (triangular) grid graph, a large amount of research
has also been done for more general cases and different graph topologies, usually
referred to as graph searching in literature. A multitude of scenarios including online or
offline, distributed or centralized settings have been considered. A survey including
further references can be found in [13]. Note that for these problems, agents are
usually controlled by a centralized algorithm with complete knowledge of the graph,
whereas agents in our model have only access to local information.



1.4 our contribution 7

Various search problems for polygons have been analyzed in literature. These
include agents having to spot an intruder while moving freely across the polygon
[25] or using a ray-like flashlight from the boundary [2], or viewing/illuminating the
entire polygon, often also referred to as the art gallery problem [37]. In the geometric
model proposed by Karaivanov et al. [22], we will look at sweeping a polygon with
barrier curves. They construct optimal sweeps for rather simple classes of polygons
(see Section 2.1) and prove that computing sweepwidth is NP-hard. We will develop
approximation algorithms for constructing sweeps. That model is generalized by
Markov et al. [30] to the directed sweepwidth where barriers must start and end on
predefined parts of the boundary. They also give a rather involved lower bound for
the sweepwidth based on the sweepwidth of three non-intersecting subshapes.

If restricted to a single curve and simple polygons, sweepwidth is equivalent to the
elastic ring-width [40], solved in time O(n2 log n) [18]. Hence, ring-width constitutes
an upper bound for sweepwidth. However, that bound can be arbitrarily bad, e. g.,
for an arbitrarily narrow T-polygon (cf. Figure 4).

1.4 our contribution

In Chapter 2, we consider the problem of decontaminating n-vertex polygons using
barrier curves (see Section 1.2.2) and seek to minimize the bottleneck length of the
computed sweep. We consider several classes of polygons and develop algorithms
to approximate the sweepwidth and construct sweeps with that bottleneck length.
Moreover, we introduce a class of polygons called square-tree polygons (see Defini-
tion 14), for which we are able to give an O(1) approximation for the sweepwidth.
These results are summarized in Table 1. Furthermore, if we had a polynomial time
O(1) approximation algorithm for node search (see Section 1.2.3), we could construct
such an algorithm for sweeping a complex polygon (see Theorem 37).

polygon type runtime appr . factor reference

Convex O(n) O(1) Section 2.2

STP O(n3 log n) O(1) Section 2.3

Simple O(n) O(log n) Section 2.4

Complex O(n14 log4 n) 2 O(log n) Section 2.5

Complex O(n log4 n) O(
√

n) Section 2.5.4

Complex in NP O(1) Corollary 47

Table 1: Summary of algorithms for computing the sweepwidth of a polygon.

In Chapter 3, we develop algorithms for decontaminating an n-node environment
in the robot model (see Section 1.2.1), using as few tiles as possible. Similarly to
above, we consider several classes of environments. These results are summarized
in Table 2. We discuss how to use multiple robots to speed up those algorithms.
For all algorithms, we are able to achieve linear speedup under certain restrictions
regarding the number of robots. We can also show that the runtime achieved for

2 Actually constructing the sweep takes time O(n20 log4 n).



8 introduction

convex environments is asymptotically optimal. Lastly, we prove that computing the
minimum number of tiles needed to decontaminate an environment is NP-hard
(see Section 3.4).

environment type runtime appr . factor reference

Parallelogram O(n) 1 Section 3.1.1

Convex O(n) O(1) Section 3.1

Simple O(n2) O(log n) Section 3.2

Complex O(n2 log n) O(
√

n) 3 Section 3.3

Table 2: Summary of algorithms for decontaminating environments with robots.

3 Provided the environment has radius O(
√

n). If c is the maximum number of tiles on a line in direction
d ∈ {N, NW, NE}, then we have an approximation factor of O(c).



2
D E C O N TA M I N AT I O N O F P O LY G O N S

This chapter deals with the decontamination of polygons, as defined in Section 1.2.2.
Specifically, we will introduce various algorithms to compute decontamination
sweeps. We begin by looking at existing results from [22] for optimal sweeps. Af-
terwards, we consider a class of polygons P for which we are able to give an O(1)
approximation, i. e., an algorithm that computes a sweep with a bottleneck length of
at most O(1) · sw(P). Then we give an O(log n) approximation for simple polygons
and one for complex polygons, having a significantly higher runtime cost. Therefore,
we also give a more efficient approximation algorithm for complex polygons at the
cost of having only an approximation factor of O(

√
n).

2.1 optimal sweeps

Karaivanov et al. [22] construct optimal sweeps for some simple classes of polygons.
Before describing sweeps, we state some of their results as they are necessary for
reasoning about optimal decontamination sweeps.

lemma 1: For two path-connected planar regions A and B with A ⊆ B, it holds
that sw(A) ≤ sw(B) [22].

The intuition behind the previous lemma is that we can obtain a decontamination
sweep for A by restricting the barriers of a decontamination sweep of B to A.

Generally, reasoning about curves inside a polygon appears to be rather difficult.
The next theorem allows us to only consider sweeps whose barriers consist of one or
two line segments connecting two points on the polygon’s boundary.

definition 2: A sweep is in canonical form if it only consists of curves made up by
one or two line segments that start and end on the region border (i. e., the outline in
case of polygons) [22].

If a sweep is in canonical form, all of its barriers are similar to the barriers
connected to the hole of the polygon in Figure 2.

theorem 3: From each decontamination sweep, a decontamination sweep in canon-
ical form can be constructed without increasing its length at any time [22].

The following corollaries are implied directly.

corollary 4: A point at distance d from the region border needs curves of length
at least 2d to be swept [22].

corollary 5: The sweepwidth of a circle equals its diameter [22].

corollary 6: The sweepwidth of an a× b rectangle is min{a, b} [22].

An L-polygon is an orthogonal polygon, i. e., each interior angle is either 90◦ or
270◦, made up by the union of two axis-aligned rectangles of dimensions a× w and
w× b sharing a single vertex, as depicted in Figure 3. The sweep consists of a single
barrier, starting at 1−2, then moved to 3−4, 4−5, 4−6, and finally to 7−8.

9



10 decontamination of polygons

Figure 3: Decontamination sweep of an L-polygon (reproduced from [22]).

lemma 7: An L-polygon with rectangles of dimensions a× w and w× b, w ≥ a + b
has sw(L) =

√
a2 + b2 [22].

A T-polygon is the union of two axis-aligned rectangles of dimensions w× a and
b× w such that the short side of the latter rectangle is attached to the middle of
the former, as depicted in Figure 4. Depending on the ratio of a to b, there are two
optimal ways to sweep a T-polygon. In the left image, the vertical part is cleaned
first, with a barrier stopping at 1−2. Afterwards, the horizontal part is swept with
a barrier starting at 4−5 and moved to 6−7. In the right image, after cleaning the
vertical part, the barrier moves from 1−2 to 1−3−2 and is subsequently split, its
parts moving to 4−5 and 6−7, respectively.

lemma 8: A T-polygon with rectangles of dimensions w× a and b× w, w ≥ 2a + b
has

sw(T) =


√

4a2 + b2 if a ≤ 2b/3

a + b otherwise
[22].

Figure 4: Decontamination sweep of a T-polygon (reproduced from [22]).

This result can be generalized to a comb polygon which is similar to the T-polygon
but with multiple vertical rectangles.

2.2 convex polygons

In this section, we shall consider convex polygons, i. e., polygons P such that the
line between any two points in P is also fully contained in P. We will show that the
following upper bound on sw(P) is within a factor of O(1) of the actual sweepwidth
of P if P is convex.

definition 9: Let S ⊆ R2 be compact and path-connected. A supporting line of S is
a line intersecting the boundary of S but not its interior. The width of S, w(S), is the
minimal distance of two parallel supporting lines of S.



2.2 convex polygons 11

As an example, the blue lines above and below the polygon in Figure 5 are part of
two parallel supporting lines.

lemma 10: For any compact path-connected shape S, it holds that sw(S) ≤ w(S)
[22].

Proof. S is fully contained between two parallel supporting lines at distance w(S).
The area between these lines can clearly be swept with a single curve of length w(S).
Due to Lemma 1, we have sw(S) ≤ w(S).

Karaivanov et al. [22] conjecture that sw(P) = w(P) holds if P is a convex polygon.
They plan on proving this in a full version of their paper, however that is not available
yet, to the best of our knowledge. Hence, we will show sw(P) = Θ(w(P)) next.

lemma 11: Given a convex polygon P, a rectangle r can be inscribed in C such that
a homothetic copy R of r (i. e., a version of r upscaled by a factor λ) is circumscribed
about P with positive homothety ratio λ ≤ 2 [28]. See Figure 5 for a visualization.

Figure 5: Inscribed and circumscribed rectangle of convex polygon as in Lemma 11.

lemma 12: Given a convex polygon P, it holds that sw(P) ≥ w(P)/2.

Proof. Let r be an inscribed rectangle in P with side lengths a ≤ b such that a homo-
thetic copy R of r with positive homothety ratio λ ≤ 2 exists that is circumscribed
about P as in Lemma 11. Clearly, λa ≥ w(P) ≥ sw(P). From Lemma 1 it follows that
sw(P) ≥ a. Therefore, λ · sw(P) ≥ w(P) and finally sw(P) ≥ w(P)/2.

We have shown that the decontamination sweep constructed in the proof of
Lemma 10 is within O(1) of the optimum. We still need an algorithm to compute
that sweep. Before we get to that however, we need to discuss what kind of output
that algorithm shall produce. Obviously, the algorithm cannot output all points of the
barrier curves at all times because they are infinite. Thus, the output needs to define
the sweep using some suitable format. For this algorithm, we will be quite explicit
and describe how to construct a function defining the barrier points’ coordinates
during the sweep. In later algorithms, we will describe the output in a less formal
manner but shall still ensure that it is clear how the sweep is constructed.

In the following, we assume that common mathematical operations on numeric
types such as the coordinates of a polygon’s vertices can be performed in time O(1).



12 decontamination of polygons

theorem 13: Let P be a convex polygon with n vertices, given by a circular
linked list as points pi = (xi, yi). A decontamination sweep with bottleneck length
w(P) = Θ(sw(P)) can be constructed in time O(n).

Proof. The width of P and the corresponding supporting lines are be computed in
time O(n) [20]. Note that one edge of the polygon will be parallel to the supporting
lines. Afterwards, P is rotated such that the supporting lines are parallel to the x-axis.
This is possible in O(n) by just applying a rotation matrix. We further translate and
scale the polygon such that its minimal x-coordinate is 0 and the maximal 1. The
barrier is then parallel to the y-axis.

Next, we sort the vertices such that xi ≤ xi+1 for x = 1, . . . , n. W.l.o.g., we can
assume that P has no redundant points, i. e., points whose removal would not change
the outline of P. Such points could also easily be removed in time O(n). The sorting
can be done in O(n) by splitting the list of points where xi is maximal and minimal,
respectively. Since P is convex, there are at most two points with maximal (minimal)
x-coordinate and if so, they are connected. Thus, the described split yields two lists
of points, sorted by their x-coordinate which can be merged to one in time O(n).

On a horizontal interval from xi to xi+1, the upper and lower part of the polygon’s
outline are characterized by two affine linear functions fi(x) and gi(x). Given a time
t ∈ [0, 1], let i be such that t ∈ [xi, xi+1]. The barrier points at time t shall therefore
be (t, fi(t)) and (t, gi(t)). This defines a sweep as in Lemma 10 and therefore a
decontamination sweep. The output consists of the functions fi and gi for each
interval [xi, xi+1]. These functions can easily be computed from the edges incident to
xi and xi+1 in time O(1) each. Therefore, the algorithm has a runtime of O(n).

2.3 a class of polygons with an O(1) approximation

In this section, we look at another class of polygons for which we can give an O(1)
approximation algorithm for an optimal decontamination sweep.

2.3.1 Square-tree Polygons and Weighted Node Search

definition 14: A polygon P is a square-tree polygon (STP), if it is the union
of axis-aligned squares S1, . . . , Sn with side lengths ri ∈ N having the following
properties:

(a) For i ̸= j, let Iij = Si ∩ Sj. W.l.o.g., let ri ≤ rj. Either Iij = ∅ or Iij is exactly the
set of points on one side of Si.

(b) Let TP = (V, E) with V = {1, . . . , n} and E = {{i, j} | Iij ̸= ∅}. TP is a tree.
(c) Each side of Si is adjacent to at most one other square.

See Figure 6 for an example. The graph G is drawn as defined above; ri is written
inside Si.

The approach to decontaminate an STP will be to perform decontamination (or
node search) on the weighted tree obtained by assigning weights w(i) := ri to the
nodes of TP. We will first formally define decontamination for weighted graphs
as an extension of Section 1.2.3 and refer to an existing approximation algorithm
for decontaminating weighted trees. Afterwards, we show how to transform a
decontamination strategy on a weighted tree to a decontamination sweep in an STP.



2.3 a class of polygons with an O(1) approximation 13

Figure 6: Square-tree polygon as defined in Definition 14.

Lastly, we show that the node-search number of a weighted tree and the sweepwidth
of the corresponding STP are within a constant factor of one another.

Dereniowski [11] gives an O(1) approximation algorithm for the edge search
problem in weighted trees. We will, however, use the weighted node search problem
in our proofs. Although they state that their methods also yield an O(1) approxima-
tion for weighted node search, they do not give an algorithm for obtaining such a
node-search strategy from an edge-search strategy. Therefore, we will introduce the
weighted edge search problem next (as defined in [11]), together with the weighted node
search problem and show how to transform strategies from one to the other.

Let G = (V, E, w), w : V ∪ E → N+ be a connected undirected weighted graph.
Initially, all nodes and edges are considered contaminated. A search strategy S is a
sequence of the following types of moves:

(a) Place s ≥ 1 searchers on a node.
(b) Remove s ≥ 1 searchers from a node v, provided at least s searchers are present

at v.
(c) Slide s ≥ 1 searchers from u to v, provided {u, v} ∈ E and at least s searchers

are present at u.
An edge e ∈ E is cleared (or decontaminated) if at least w(e) searchers simulta-

neously slide across e. A node v ∈ V is cleared if it is occupied by at least w(v)
searchers. Nodes or edges are recontaminated if there exists a path of unguarded
nodes (i. e., nodes v containing fewer than w(v) searchers) between that node or
edge and a contaminated node or edge. S is said to clear G if all nodes and edges
are cleared at the end of S . Let the weighted edge-search number of S , wes(G,S), be
the maximum number of searchers simultaneously present on G during S . wes(G)

is then the minimum wes(G,S) among all strategies clearing G.
Next, we define weighted node search. Let G = (V, E, w), w : V →N+ be a connected

undirected graph. Weighted node search is similar to weighted edge search, with the



14 decontamination of polygons

restriction that only moves (a) and (b) are allowed and an edge {u, v} is cleared if
w(u) searchers are present at u and w(v) at v. Further, only edges can be considered
contaminated. We define the weighted node-search number wns akin to wes.

lemma 15: Let G = (V, E, w), w : V ∪ E → N+ with w(e) = 1 for all edges e ∈ E.
It holds that wes(G)− 1 ≤ wns(G) ≤ 2 · wes(G).

Proof. We will prove this lemma constructively by transforming a strategy for edge
search to a strategy for node search and vice versa, without significantly increasing
the number of searchers.

Let Se be an edge-search strategy clearing G. We will now construct a node-search
strategy Sn clearing G. Moves of type (a) and (b) can simply be transferred from Se to
Sn. Sliding moves (c) from u to v however, need to be dealt with. If {u, v} is actually
cleared by the sliding move, u was guarded beforehand, otherwise recontamination
would have occurred immediately. In case the edge is not cleared, the move was
redundant and can just be removed. Otherwise in Sn, we place w(v) searchers on v
and then remove as many searchers from u. We potentially also remove searchers
from v to match the number of searchers v has in Se.
Sn clears G since edges and nodes are cleared at the same time they are cleared

in Se and recontamination semantics are equivalent for node and edge search.
It holds that wns(G,Sn) ≤ wes(G,Se) + maxv∈V w(v) ≤ 2 · wes(G,Se) and hence
wns(G) ≤ 2 · wes(G).

Now, we prove the other inequality. Let Sn be a node-search strategy clearing G.
We construct an edge-search strategy Se as follows. Moves of (a) and (b) are taken
from Sn as is. Whenever an edge {u, v} is cleared in Sn, we place an additional
searcher on u and slide it over to v to clear the edge in the edge search model.
Se clears G by the same argument as before. At most one additional searcher is

used, thus wes(G,Se)− 1 ≤ wns(G,Sn) and wes(G)− 1 ≤ wns(G).

Together with the previous lemma, [11] allows us to construct an O(1)-approximate
node-search strategy for weighted trees in runtime O(∆n3 log n) where ∆ is the
maximum node degree. Since a tree TP obtained from an STP P has ∆ ≤ 4, we can
find an optimal node-search strategy in time O(n3 log n).

2.3.2 Constructing a Decontamination Sweep

Given a node-search strategy S for TP, it is easy to construct a decontamination
sweep for P:

lemma 16: Let P be an STP. It holds that sw(P) ≤ 5 · wns(TP).

Proof. Let S be a node-search strategy for TP. We will construct a decontamination
sweep from S . When a node i is cleared, a barrier curve is put up around the
corresponding square Si. Afterwards, the inside of that barrier is swept, leaving
the entire square decontaminated. A total curve length of at most 5 · w(i) = 5ri is
required. Clearly, a square is decontaminated and recontaminated at exactly the same
time the corresponding node would be in S . We therefore obtain a decontamination
sweep with bottleneck length at most 5 · wns(TP,S). It follows that sw(P) ≤ 5 ·
wns(TP).

Clearly, these operations can be performed in time O(n).



2.3 a class of polygons with an O(1) approximation 15

The final step is to construct a node-search strategy from a decontamination sweep,
thereby showing that wns(TP) = O(sw(P)).

lemma 17: Let P be an STP. It holds that wns(TP) = O(sw(P)).

Proof. Consider a decontamination sweep of P. Due to Theorem 3, we may assume
the sweep to be in canonical form, w.l.o.g. To decontaminate a square Si, barriers of
length at least ri need to be inside Si at some point, by Corollary 4. Whenever all
paths connecting the centers of adjacent squares Si and Sj are blocked by a barrier,
curves of length at least min{ri, rj} inside Si ∪ Sj are needed due to property (a)
from Definition 14. Therefore, if all paths from Si to the centers of adjacent squares
Sj1 . . . Sjl , l ≤ 4 are blocked, then there are curves of length at least min{ri, max rjk}
inside

⋃
k Sjk ∪ Si.

Now, let us look at a decontamination sweep. During the sweep, barrier curves
partition the area of P into multiple decontaminated and contaminated areas. Let
T be a maximal subtree of TP with the property that the centers of the squares
corresponding to its nodes are all in the same decontaminated area. Let i be a
node of T that has neighbors j1, . . . , jl , 1 ≤ l ≤ 4 in TP that are not in T. Since T
is maximal, the centers of Si and Sjk are separated. Thus, curves of length at least
min{ri, max rjk} are inside Si and its neighbors. We can therefore separate the node i
from its neighbors j1, . . . , jl using a total of min{w(i), ∑ w(jk)} ≤ 4 ·min{ri, max rjk}
searchers, placed either on i or j1, . . . , jl (1).

We construct a strategy S such that the subtrees T as defined above are always
decontaminated (2). Consider the events altering these subtrees, i. e., (a) adding or (b)
removing nodes, and (c) joining or (d) splitting of subtrees. We can ensure that no two
events occur at exactly the same time by altering curves by an infinitesimal amount
such that events occur slightly earlier or later without changing the bottleneck length
of the sweep significantly.

In the following, we describe how to handle each event, such that (2) is satisfied at
all times.

In case (a), if a node v becomes a new tree of size one, we first guard v. Depending
on (1), fewer searchers might be required to guard the neighbors of v rather than v
itself. In that case, we guard the neighbors and remove all searchers from v.

If v is added to an existing tree T, v is either already guarded or its parent u wrt.
T. In the latter case, we guard v. As above, we now either guard the children of v
or leave v itself guarded. The neighborhood of u might also need to be modified in
accordance with (1).

The cases (b), (c), and (d) are handled analogously in that there are at most 5
affected nodes whose neighborhood needs to be modified due to (1). All searchers
on nodes without neighbors not in the same subtree are removed. After these
modifications, for each node i guarded as described in (1) with s searchers, curves of
length at least s/4 are inside Si or one of its neighbors. Hence, each point in a curve
is “counted” at most 5 times and the number of searchers used is O(sw(P)). The
modifications require an additional O(max ri) searchers because at most one event is
handled at a time. In total, wns(TP) ≤ wns(TP,S) = O(sw(P)).

Putting the previous two lemmas together, we obtain the final theorem for this
section.



16 decontamination of polygons

theorem 18: Given an STP P together with its tree TP, we can compute a decon-
tamination sweep of P in time O(n3 log n) with bottleneck length O(sw(P)).

Proof. First, a node-search strategy S clearing TP is computed in time O(n3 log n).
From [11] and Lemma 17, we know that wns(TP,S) = O(sw(P)). The proof of
Lemma 16 describes how to construct a sweep from S in time O(n).

remark 19: We defined STPs as having integer side lengths. However, the previous
algorithm also works with arbitrary side lengths if we round the ri up to the nearest
fraction of max ri/n, as it then uses at most sw(P) more searchers than a version of
the same algorithm able to deal with arbitrary side lengths (cf. Section 2.5). Further,
we conjecture that our results still hold if we allow multiple adjacent squares on the
same side.

remark 20: If we are given P, but not TP, the latter can be computed greedily by
searching for three adjacent edges with two inner angles of 90◦, such that the middle
edge is at most as long as the others and the square defined by these edges fits
inside P. Under the promise that P is indeed an STP, such edges have to exist and
the shortest is the side of a square associated with a leaf in TP. We repeat this until
all squares are identified.

More interesting is perhaps the problem to construct P, given TP, or prove that it
is impossible. E. g., a node with weight 1 and four neighbors with weight 2 cannot
be constructed as an STP.

2.4 simple polygons

In this section, we develop a linear time algorithm to compute a decontamination
sweep of a simple n-vertex polygon P (i. e., a polygon without holes) with bottleneck
length O(RP log n) = O(sw(P) log n) where RP is the radius of the largest inscribed
circle in P. This algorithm relies on the medial axis of P, which is introduced in the
following.

2.4.1 Medial Axis

The medial axis M of P was originally proposed by Blum [3] and is defined as the set
of centers of circles inside P touching the boundary in two or more points, together
with convex vertices of P. For any point x ∈ M, we denote the maximal inscribed
circle centered in x as C(x) with radius r(x). Figure 7 depicts the medial axis of a
simple polygon, including C(x) for several x ∈ M.

The medial axis forms a planar graph G = (V, E) (inner nodes red, leaves dark
red) whose edges are curves consisting of straight-line segments (blue) and portions
of parabolic curves (green) [38]. For simple polygons, this graph is a tree [7, 29]. Note
that edges and nodes of G will also refer to the corresponding points and curves in
M. Thus, a node v ∈ V identifies a point inside P, and an edge e ∈ E a set of points.
There always exists a node v ∈ V with r(v) = RP (see the large circle in Figure 7).

In the following, we subdivide P into multiple polygons Pe for each e = {u, v} ∈ E
such that Pe intersects Pe′ iff e and e′ are incident, and e ⊂ Pe. This will allow us to
transform a node-search strategy on G into a decontamination sweep of P.



2.4 simple polygons 17

Figure 7: Medial axis of a simple polygon.

lemma 21: The radius function r : M→ R is (sequentially) continuous.

Proof. We show that r|e is continuous for each edge e = {u, v} ∈ E. The continuity of
r follows. e can be regarded as a metric space, with the distance along e serving as a
metric. It is isomorphic to [0, 1] and hence compact. For metric spaces, continuous and
sequentially continuous are equivalent. Assume that r is not continuous. Let (xn) ⊆ e
with limn→∞ xn = x such that (r(xn)) does not converge to y := r(x). Let (x′n) be a
subsequence of (xn) such that (r(x′n)) converges to y′ ̸= y. There exists N such that
∀n ≥ N : |xn − x| < |y′ − y|/2. But that contradicts |r(xn)− r(x)| ≤ |xn − x| because
otherwise the smaller circle would be completely inside the larger one.

lemma 22: If P is partitioned by the line segments from v to the contact points of
C(v) for all v ∈ V, then each obtained component contains one edge e ∈ E as well
as its incident nodes (see Figure 8). It shall be identified as Pe. Pe contains no other
edges or nodes. Components Pe and Pe′ intersect each other iff e and e′ are incident.



18 decontamination of polygons

Figure 8: Partitioning a polygon based on the medial axis (blue) using line segments (green)
from nodes to contact points of maximum inscribed circles centered at nodes.

Proof. For v ∈ V, C(v) touches the outline of P in δ := deg(v) points p1, . . . , pδ

(ordered clockwise), such that exactly one edge incident to w emanates from w in
between the line segments vpi and vp(i mod δ)+1 [29]. Similarly, if we draw such line
segments from a point on an edge, they are separated by the edge as well. Edges do
not intersect because G is planar. A line segment vpi is not intersected by an edge, as
visualized by Figure 9, since otherwise the circle C(p′) at the intersection p′ would
be contained in C(v) and thus could only have one contact point with the outline
of P. Two such line segments vp and wq can only intersect in their endpoints, since
C(p′) on the intersection p′ would otherwise have two contact points but p′ /∈ M by
the previous statement.

For an edge e = {v, w} ∈ E and the corresponding line segments vp and wq, such
that both line segments lie on the same side of e, assume p and q to lie on different
outlines (e.g. on the outer outline and on a hole). If we sweep a circle C(x) along
e from v to w, the contact point on that side of the edge, where p and q lie, has to
jump between the outlines.

Let e′ := {x ∈ e | x < x′ for all x′ ∈ e where C(x′) does not touch the outline of p}
and y = sup e′. y must be on the interior of e, since C(x) touches the same outline
as p (q) on a short interval near v (w). By the continuity of r, e, and the outlines of
P, C(y) touches two different outlines on one side of e. Hence, x is a node, which
is a contradiction. Therefore, every edge e = {u, v} ∈ E is contained in only one
component of the partition.

By the above reasoning, Pe ⊂ P is the polygon constructed from the four relevant
line segments and the two parts of outlines of P (see Figure 8). Assume there is some
edge e′ inside Pe. Since e′ = {v′, w′} cannot cross the line segments or the outline
of P, it must be fully contained in Pe. Hence, every path on M from v to v′ is also
inside Pe. But that would imply an edge branching off from e′, which is impossible.



2.4 simple polygons 19

Clearly, the only points of intersection between polygons Pe and Pe′ can be the
associated line segments, including the node. Hence, the intersection of Pe and Pe′ is
equivalent to the incidence of e and e′.

Figure 9: Visualization of the proof that no edge of the medial axis can cross the line segment
connecting a node to one of its closest points on the polygon’s outline.

The next lemma allows us to decontaminate the Pe polygons.

lemma 23: Let e = {u, v} ∈ E. If barriers are placed on C(u) and C(v) and another
circle C(x) is swept along the edge from u to v, the entire area C(u) ∪ C(v) ∪ Pe is
decontaminated.

Proof. Let X be the set of points of the edge from u to v, including u, v, and Y, Z the
two parts of the outline between C(u) and C(v). This is well defined as outlined in
Lemma 22. Let y0 and z0 be the intersection of Y and Z with C(u), respectively. X, Y, Z
with the Euclidean metric are sequentially compact, since they are isomorphic to
[0, 1] using the distance along the edge or outline as metric. Let f : X → Y, g : X → Z
be the functions mapping from the edge to the two closest points. f and g are well
defined by the proof of Lemma 22.

Assume f is not continuous. Let (xn) ⊆ X with limn→∞ xn = x such that ( f (xn))

does not converge to y := f (x). Let (x′n) be a subsequence of (xn) such that ( f (x′n))
converges to y′ ̸= y. We have limn→∞ r(xn) = r(x) since r is continuous. Hence, the
circle of radius r(x) centered in x touches both y′ and y. But that contradicts the
definition of f . Analogously, g is continuous.

After sweeping a circle C(x) along X from u to x1, the entire area bordered by Y,
Z and the line segments uy0, uz0 and x1 f (x1), x1g(x1) has been swept. This holds
because the line segments x f (x), xg(x) (contained inside C(x)) move continuously
as f , g, as well as the curve of e are continuous. Hence, an intruder on one side of
these line segments would have to jump over these segments to get to the other side
without touching them. Once C(x) has reached v, the entire area C(u) ∪ C(v) ∪ Pe

has been decontaminated.

An algorithm for computing an optimal node-search strategy in time O(n log n) is
given by Megiddo et al. [31]. In order to comply with the targeted O(n) runtime, we



20 decontamination of polygons

present an algorithm that computes a node-search strategy for a tree T with n nodes
using O(log n) searchers.

2.4.2 Constructing a Decontamination Sweep

Algorithm 1 Algorithm to compute a node-search strategy for trees.

1: procedure NodeSearch(T, u, d) ▷ Tree T rooted at u; d(v) number of
descendants of v

2: w← argmaxchild v of u d(v)
3: if u is not guarded then
4: Place searcher on u.
5: for child v ̸= w of u do
6: NodeSearch(Tv, v, d) ▷ Tv is the subtree rooted at v
7: Place searcher on w.
8: Remove searcher from u. ▷ All subtrees of v besides Tw have been cleared
9: NodeSearch(Tw, w, d)

lemma 24: Algorithm 1 computes a node-search strategy for an n node tree using
at most log n + 1 searchers in time O(n).

Proof. Correctness and runtime are obvious. We show that at most log n+ 1 searchers
are used by induction on the number of nodes. The statement clearly holds for a
single node. Now, assume NodeSearch is called with d(u) = n. Clearly, for each
recursion from line 6, d(v) ≤ d(u)/2. Hence, at most log(n/2) + 1 = log n searchers
are used during the recursions, for a total of log n + 1 searchers in the subtree of
u, including the searcher on u. Since all searchers are removed from the subtree
after NodeSearch returns, no more than log n searchers are used during the loop.
Between lines 6 and 9, only two searchers are on Tu. Since d(w) < d(u) and no
searcher is placed in line 4 in the recursion from line 9, no more than log n + 1
searchers are on Tu during that recursion.

We can now prove the final theorem of this section.

theorem 25: Given a simple polygon P with n vertices, we can compute a de-
contamination sweep in time O(n) with bottleneck length O(RP log n) = O(sw(P) ·
log n).

Proof. The first step is to compute the medial axis of P in time O(n) using the
algorithm by Chin et al. [6]. The underlying tree T can be extracted easily as the
medial axis is represented using a set of nodes connected by curves. A node-search
strategy S is obtained with Algorithm 1.

Since the decomposition given by Lemma 22 is isomorphic to the medial axis
graph G, a node-search strategy on G can be transformed to a decontamination
sweep. For each searcher on a node v, we add C(v) as barrier. Once an edge is
decontaminated in G, we sweep a circle along it as described in Lemma 23. This uses
curves with a total length of at most 2πRP · (ns(T,S) + 1) = O(RP log n).



2.5 complex polygons 21

Note that the radius function used in Lemma 23 can be computed from the curve
segments making up the corresponding edge and the sites they are the bisectors
of. We refer the reader to [29] for more details on bisectors in the context of medial
axes.

remark 26: The given bound on the approximation factor is tight.

Proof. Consider a polygon P made up from k aligned squares of length k, connected
via straight lines of width 1 touching the center of sides, such that the squares form a
balanced binary tree. P has n = Θ(k) vertices. We can decontaminate P by using only
one barrier of length k to sweep squares in addition to O(log k) barriers of length 1
at entries of edges. Hence, sw(P) = Θ(n). The only medial axis nodes with degree
greater than 1 are the centers of squares. Therefore, the algorithm uses barriers of
length Θ(n log n).

Although the sweep constructed with the previous theorem can be much worse
than the optimum, the next remark shows that there are in fact polygons for which it
achieves results within O(1) of the optimum. It generally performs well for families
of polygons where RP is small in comparison to the area. Note that Lemma 10 always
yields a sweep with bottleneck length at most w(P).

remark 27: There are polygons P with sw(P) = Θ(RP log n). For these polygons,
Theorem 25 yields an O(1)-optimal decontamination sweep.

Proof. A complete binary tree T with n nodes has ns(T) = Θ(log n), which follows
from [33]. Replacing multiple edges in T with a path each does not increase ns(T)
by more than one. If we replace edges using sufficiently long paths, T can be the
tree TP of an STP P as defined in Definition 14 consisting of only unit squares.
Arbitrarily long straight paths of unit squares have only O(1) vertices. It holds that
sw(P) = Θ(RP log n).

remark 28: We conjecture that an O(1) approximation can be obtained by adding
nodes onto edges of the medial axis where the radius is minimal and assigning
w(v) := r(v) for all nodes v and then applying the methods from Section 2.3.
However, proving that bound on the sweepwidth appears difficult because arbitrarily
many nodes with a large radius can be close together such that their circles overlap.

2.5 complex polygons

In this section, we give a polynomial time algorithm for computing a decontamination
sweep of a complex n-vertex polygon P (i. e., a polygon with holes, but no intersecting
edges) with bottleneck length O(log n · sw(P)). This is accomplished by rasterizing
P into a hexagonal grid represented by an induced subgraph GP of the triangular
lattice graph (see also Section 1.2.1) and then computing a node-search strategy for
that grid graph using existing algorithms. We chose the hexagonal grid in order to
not have to deal with diagonal “connections” of squares in a Cartesian grid. First,
we will show how to rasterize P and prove that sw(P) = Θ(ns(GP)). Afterwards, a
method will be described that allows compression of polygons in a way such that GP

has at most O(n14) nodes.



22 decontamination of polygons

2.5.1 Rasterization

Before rasterization, the resolution of the grid needs to be determined, i. e., the length
of edges in the triangular grid graph or the distance between the centers of adjacent
cells (hexagons implied by the lattice). It shall be rP := RP/n with the intuition that
O(n) cells can be guarded with curves of total length O(sw(P)). RP can be calculated
using the medial axis of P. Lee [29] notes that the medial axis can be obtained from
the Voronoi edges of P by removing edges outside of P or incident to reflex vertices.
This can be done in time O(n). The Voronoi diagram can be computed in time
O(n log n) for a set of point sites and line segment sites [14]. For completeness, we
briefly define the Voronoi diagram.

definition 29: The Voronoi diagram of a set of sites in the plane partitions the
plane into regions, called Voronoi regions, each belonging to one site. The Voronoi
region of a site s is the set of points of p such that s is among the sites closest to p.

In case of point- and line segment sites, the Voronoi diagram is determined by a
planar graph such that the edges (referred to as Voronoi edges) are made up by the
intersection of two Voronoi regions and the nodes by the intersection of at least three
[14].

lemma 30: The medial axis of a complex polygon can be computed in time
O(n log n).

We can now describe the rasterization process. There are different types of cells
that will need to be treated differently by the algorithm. To that end, we introduce
categories for cells intersecting P.

definition 31: Each cell not completely outside P belongs to exactly one of the
following categories:

(a) Blocked cell: cell that either contains a vertex of P, or is completely inside P and
(i) is adjacent to two cells on opposite sides that are both intersected by at least
one edge (dark gray in Figure 10).

(b) Full cell: cell inside P without (i) (white).
(c) Empty cell: any other cell (light gray).

All cells between the outermost blocked cells belonging to the same edge pair that
do not contain a vertex shall be redefined as empty cells (see striped cells in Figure 11).

GP is then the graph induced by full cells.
The general idea behind blocked cells is that we want to be able to ignore small fea-

tures of the polygon that cannot be reasonably approximated by our cells. Therefore,
those regions that can be reasonably approximated by the grid will be decontami-
nated one after the other, separated by blocked cells. We will argue that there are
only O(n) blocked cells. The next lemma allows us to decontaminate connected
components of full cells sequentially without having to leave barriers inside them.

lemma 32: Let C1 and C2 be two connected components of full cells. No simple
path W from C1 to C2 of empty cells has a distance greater than two to its closest
blocked cell if there exists a curve inside P from C1 through W to C2 (cf. Figure 14).

Proof. The curve condition is needed since empty cells may be intersected by arbi-
trarily many edges. Assume such a path exists. First, we will argue that all cells of
W would have to lie on the same edge. To that end, we prove that W contains no



2.5 complex polygons 23

Figure 10: Polygon rasterized into a hexagonal grid (blocked cells dark gray, empty cells
light gray, full cells white).

empty cell completely inside P and then show that W does not contain cells lying on
different edges of the polygon.

Note that we assume the cells to lie on an edge reachable from the curve via a line
segment without intersecting edges of P, e. g., if there was another edge e′ directly
below the lower edge e of Figure 12 with the curve above e, then the empty cells
would not be considered to lie on e′.

W begins in an empty cell u adjacent to a full cell of C1. Assume that W contains
an empty cell v completely inside P. This will be a redefined cell from Definition 31.
To reach v from u, W has to pass the first blocked cell between the relevant edges
(see fourth example in Figure 13), which would bring W too close to a blocked cell.

Assume that W contains an empty cell v that does not share an edge with u. Let v
be the first such cell. Thus, W must either contain adjacent cells not sharing an edge
(first example in Figure 13), or a cell containing both edges (second example). If the
angle between the edges is small, then W would have passed a blocked node before
reaching v (left cells in Figure 12). Otherwise, the vertex of one of those edges would



24 decontamination of polygons

Figure 11: Redefining cells between outermost blocked cells of an edge pair as empty (striped
cells).

Figure 12: Blocked cells between two polygon edges when rasterizing the polygon into a
hexagonal grid.

be too close to W (first two examples). If the angle is too large, then the edges have
no adjacent empty cells (third example).

We can now assume that all cells of W lie on one edge, connecting two maximal
connected components of full cells. Therefore, the area needs to be constricted near
W in a way that not an entire two layers of cells fit on top of W (see right side of
Figure 12 where two layers of full cells can be considered to lie above the empty
cells on the lower edge), otherwise the components would be connected. Also, that
constriction needs to be caused by a vertex at a distance of at most two from W,
otherwise we would have a situation similar to Figure 11 or Figure 12 again where
W passes through the redefined area between two edges. See Figure 14 for such a
situation. Hence, W cannot exist.

lemma 33: There are O(n) blocked cells.

Figure 13: Visualization of the fact that paths of empty cells starting in a full cell and
connecting different edges are close to a blocked node.



2.5 complex polygons 25

Figure 14: Connected components of full cells separated by blocked cells.

Proof. There are O(n) blocked cells at or near vertices. Now consider a blocked cell
v with a distance of at least six to all vertices. It will be between two edges e1, e2,
as depicted in Figure 12. There are no other edges at a distance of at most three
to v, since they would either intersect e1/e2 or have a vertex too close to v. Draw a
line segment in one of the cardinal directions through the center of v, connecting
both edges. These line segments have a length of at most three and therefore do
not intersect other such line segments or polygonal edges. Two edges are connected
by at most two line segments. Hence, we can contract polygonal edges into nodes
of a planar graph by stretching the line segments into curves arbitrarily close to
the original edge. By Euler’s formula, that graph has at most O(n) edges, each
representing a blocked cell.

The next step is to perform a reduction from node search to sweeping and vice
versa, similar to Lemmas 16 and 17. Following the arguments from the proof of
Lemma 32, we obtain the following lemma.

lemma 34: A curve in P connecting an empty cell u to a full cell v, such that u has
a distance of at least three to all full cells, crosses a cell within distance at most two
of a blocked cell.

We therefore partition the polygon by cutting away all cells within distance at most
two of a blocked node. Barriers will be put up around those cells at the beginning of
a decontamination sweep and they will subsequently be cleared. These barriers have
total length O(n · rP) = O(RP) = O(sw(P)). This subdivision can be performed in
time O(n2) by calculating the intersection of the barriers around blocked cells with
the polygon.

Components after the subdivision outside those barriers that do not contain full
cells are pieces of polygonal edges (see Figure 12) with distance O(rP) of each
other. Hence, those components can be decontaminated with incurring only O(rP)

additional bottleneck length.
For those components containing full cells, the following lemmas perform the

reduction to node search.

lemma 35: Consider a component P′ of the polygon obtained by removing all
cells within distance at most two of a blocked node. Let G = (V, E) be the graph
induced by the full cells inside that component and S a node-search strategy clearing
G. A decontaminating sweep of P′ with bottleneck length O(rP · ns(G,S)) can be
constructed from S in time O(|V|).



26 decontamination of polygons

Proof. Whenever a node v is cleared, barriers are put up around all cells within
distance at most two of the corresponding cell. Afterwards, the area inside the
barriers is swept. The barriers are kept up until the searcher is removed from v. Due
to Lemma 34, all empty cells in P′ are within distance two of a full cell. Therefore,
each curve f : [0, 1] → P′ passing through a path W containing empty cells can be
mapped to a curve f ′ : [0, 1]→ P′ passing through a path of only full cells W ′, such
that maxt∈[0,1] d(v( f (t)), v( f ′(t))) ≤ 2 where v : P′ → V ∪{empty cells}maps points
on P′ to their cells. In case f connects a contaminated point with a decontaminated
point, W ′ is clearly guarded in G. As barriers are put up at distance 2 of guarded
cells, f ′ passes through a barrier.

lemma 36: Let G, P′ be defined as in Lemma 35. Given a decontamination sweep
of P′ with bottleneck length L, we can construct a node-search strategy S clearing G
with ns(G,S) = O(L/rP).

Proof. We follow the idea of Lemma 17. Hence, at any point in time during S , all
those nodes shall be cleared whose center is decontaminated (1). To that end, let v be
a cell whose center is decontaminated. If v has a neighbor w whose center does not
reside in the same decontaminated area as that of v, there is a barrier of length at
least rP/2 in v and w. In that case, searchers are put on v and all its neighbors. Hence,
O(L/rP) searchers are used to guard all nodes from (1). The events from Lemma 17

changing the set of nodes that need to be guarded can be handled analogously.

theorem 37: Let G1, . . . , Gk be the connected components of the graph induced by
full cells. It holds that sw(P) = Θ(rP maxi ns(Gi)).

Proof. First, we show sw(P) = O(rP maxi ns(Gi)). For subdividing P at blocked cells,
barriers of length O(RP) are needed. By definition of RP, maxi ns(Gi) = Ω(RP/rP) =

Ω(n). Each part Pi of P corresponding to Gi can be decontaminated using curves
of length O(rP · ns(Gi)) due to Lemma 35, given an optimal node-search strategy
clearing Gi.

Next, we prove maxi ns(Gi) = O(sw(P)/rP). Suppose we have an optimal decon-
tamination sweep. Clearly, each Pi is swept as well. Therefore, Lemma 36 allows
for the construction of a node-search strategy using O(sw(P)/rP) searchers for each
Gi.

The next lemma describes how to compute the categorization of cells in accordance
with Definition 31.

lemma 38: If P intersects m cells, then all cells intersecting P can be computed and
categorized in time O((m + n) log n).

Proof. The first step is to compute cells intersected by the outline. For each edge e
from cell u to v, start in cell u. Then check for each cell in the neighborhood of u if it
intersects e. Continue iteratively with those neighbors until reaching v. The number
of cells visited per edge is linear in the number of cells intersected by that edge.
Hence, that process takes time O(m + n). If a cell is intersected by multiple edges
but does not lie on a vertex of the polygon, we save only the first edges wrt. a ray
from the center of each neighbor. These are the only edges needed for assigning a
blocked cell to a pair of edges.



2.5 complex polygons 27

Next, we compute those cells completely inside P. For each cell adjacent to a cell
intersecting an edge, we check if it lies in P. This can be done in O(log n) for each
cell [35], with preprocessing time O(n log n), the total runtime for that step then
being O((m + n) log n). For each of those cells, we check if it is a full-, blocked- or
empty cell in time O(1).

The remaining full cells inside P are computed using a flood fill approach in time
O(m). Finally, we need to redefine cells. To that end, we determine the first and
last blocked cell for each relevant pair of edges in time O(m) because we can find
the associated edge pair in time O(1) for each blocked cell by looking at edges of
neighboring empty cells. Redefinition is then performed in time O(m) using a flood
fill approach.

2.5.2 Computing Node-search Strategies

After rasterizing, we need to compute node-search strategies for each connected
component of full cells. Algorithms from literature do not give a node search
strategy directly. Instead we need to take a “detour” via tree decomposition, path
decomposition and interval graphs. We define these terms, citing Bodlaender [4].

definition 39: A tree decomposition of a graph G = (V, E) is a pair ({Xi | i ∈
I}, T = (I, F)) with {Xi | i ∈ I} a family of subsets of V, one for each node of T and
T a tree such that

•
⋃

i∈I Xi = V
• For all edges {v, w} ∈ E, there exists an i ∈ I with v ∈ Xi and w ∈ Xi.
• For all i, j, k ∈ I: if j is on the path from i to k in T, then Xi ∩ Xk ⊆ Xj.

The width of a tree decomposition is maxi∈I |Xi| − 1. The treewidth of G, tw(G) is the
minimum width over all possible tree decompositions of G.

definition 40: A path decomposition of a graph G = (V, E) is a sequence of subsets
of vertices (X1, . . . , Xr), such that

•
⋃

1≤i≤r Xi = V
• For all edges {v, w} ∈ E, there exists an i, 1 ≤ i ≤ r with v ∈ Xi and w ∈ Xi.
• For all 1 ≤ i ≤ j ≤ k ≤ r: Xi ∩ Xk ⊆ Xj

The width of a path decomposition is max1≤i≤r |Xi| − 1. The pathwidth of G, pw(G)

is the minimum width over all possible path decompositions of G.

definition 41: A graph G = (V, E) is an interval graph, iff one can associate with
each vertex v ∈ V an interval Iv = [lv, rv] ⊂ R, such that for all v, w ∈ V, v ̸= w:
{v, w} ∈ E ⇔ Iv ∩ Iw ̸= ∅.

The interval thickness of a graph G, θ(G) is the smallest maximum clique size of an
interval graph G′ that contains G as a subgraph.

With these definitions, we can now show how to compute a node-search strategy
for a planar graph.

lemma 42: Given a planar graph G with n nodes, a node-search strategy S with
ns(G,S) = O(log n · ns(G)) clearing G can be computed in time O(n log4 n).

Proof. Gu and Xu [19] describe how to compute a tree composition of G with width
Θ(tw(G)) in time O(n log4 n). Korach and Solel [26] show that tw(G) ≤ pw(G) =

O(log n · tw(G)). Their proof also allows for a linear time construction of a path



28 decontamination of polygons

decomposition, given a tree decomposition. It further holds that θ(G) = pw(G) + 1
[4]. An interval supergraph graph of G′ with smallest maximum clique size pw(G)+ 1
can be constructed in linear time, given a path decomposition. Finally, Kirousis and
Papadimitriou [23] show that ns(G) = θ(G). Their proof directly implies a linear
time algorithm to compute a node-search strategy given G′.

2.5.3 Polygon Compression

It remains the problem that the number of cells intersected by the polygon can be
arbitrarily large. We will describe an algorithm that allows us to compress P such that
it fits into a rectangle of size O(RP · n2)×O(RP · n4).

Figure 15: Illustration of polygon compression (d1, d2, d3 are the minimum distance between
their respective lines; area inside the polygon gray).



2.5 complex polygons 29

Let I′ := [x′0, x′1] ⊂ R, x′1 − x′0 > (n + 6)RP such that no vertices of P have their
x-coordinate inside I. That interval will look like the top of Figure 15, i. e., there
are k pairs of subsegments of edges, bordering part of the polygon. For each pair,
we compute their minimum distances d1, . . . , dk which are bounded by RP and the
distance of the two points of the intersection of the edge with the line x = x0 (or
x = x1). Then, we cut out I := [x0, x1] := [x0 + 2RP, x1 − 2RP], and replace that part
as illustrated at the bottom of Figure 15. More specifically, each pair of edges is
replaced by a rectilinear path of width di from left to right, beginning with the lowest
edge. The opening between the edges is constricted to di on both sides. For each
pair of edges i, let yi (y′i) be the y-coordinate of the intersection of the lower edge
with the left (right) boundary of I. W.l.o.g., we may assume yi ≤ y′i. We then replace
the lower edge by a path constructed as follows. Begin in (x0, yi) and move as far
right until reaching either x1 (see d1 in Figure 15) or an edge of i− 1 (see d3). We can
clearly move right until at least x1 −∑i−1

j=1 di ≥ x1 − n · RP. Then we move straight
up to y′i and continue to (x1, y′i). Since x1 − x2 ≥ RP + 2, we move a distance of at
least RP right before moving up. The upper edge is replaced analogously such that
that the distance between parallel segments is di. There will be an interval I′′ with
a size of at least x1 − x0 + (n + 1) · Rp ≥ RP inside I where all edges have straight
segments. We compress I′′ to a length of RP.

We obtain a polygon P′ by performing the above steps on P both in x- and
y-direction.

lemma 43: P′ can be computed in time O(n4) and has O(n4) vertices.

Proof. The compression steps can be performed in time O(n) for every maximal I′,
of which there are at most n. In total, O(n2) time is required for compression in
x-direction. The obtained polygon has size O(n2) since each step introduces at most
n new vertices. Similarly, compression in y-direction on that polygon takes time
O(n4) and the resulting polygon P′ has O(n4) vertices.

The bound on the size after the first compression is tight. Consider a polygon P
with RP = 1/3 and n line segments of length n2 parallel to the x-axis stacked on top
of each other and n such line segments of length n next to each other. All long line
segments are split once for each small line segment. Afterwards, the polygon has
Ω(n2) vertices. We conjecture that the polygon has no more than O(n3) vertices after
the second compression.

The next lemma bounds the number of cells the polygon might intersect in the
context of Section 2.5.1.

lemma 44: P′ intersects O(n14) cells of radius rP = RP/n4.

Proof. After the first compression, the polygon has width at most O((RP · n)n), since
the maximal difference of the x-coordinates of two vertices is O(RP · n). After the
second compression, its height is analogously bounded by O((RP · n2)n2). Therefore,
the polygon fits into a rectangle of size n6rP × n8rP and intersects O(n14) cells.

Since we want to compute sweeps on P′, we need to be able to transfer them to P
and argue that compressions do not change the sweepwidth by more than a constant
factor.

lemma 45: Let P′ be the result of compressing P once. Then sw(P′) = Θ(sw(P)).



30 decontamination of polygons

Proof. We prove this statement by modifying a sweep while only increasing bot-
tleneck length by a constant factor such that barriers are never kept inside the
compressed region; they are only swept through it when both ends are already
blocked. This allows us to map sweeps from P to P′ and implies sw(P′) = Θ(sw(P)).

Consider a single pair of edges inside an interval I′ as defined above. For the
purposes of this proof, we can treat the area between those edges as two rectangles
with dimensions 2RP × d0 and 2RP × d1 joined together, where d0 is the minimal
and d1 the maximal distance between the edges inside I′. This is justified by the fact
that the angle between edges becomes arbitrarily small as n → ∞. The rectangles
are jointed together directly because we remove all barriers from the compressed
interval I.

Figure 16: Modeling the area between two edges in a compressed interval as two conjoined
rectangles (A0 (A1) is the outer half of the smaller (larger) rectangle, L0/1 refer
to the shown lines, C is the central area, and red lines show to newly placed
barriers).

This situation is depicted in Figure 16. We now describe how to transform an
optimal sweep in canonical form to remove all barriers from C. Barriers in A0 and
A1 are kept unchanged. At any point in time, let ℓ be the total length of barriers
inside A := A0 ∪ C ∪ A1. We place barriers of length 2ℓ on L0 and L1 as depicted in
Figure 16. This increases the total length of barriers inside A by a factor of at most
8. If ℓ ≥ d1/4, all paths from A0 and A1 to C are blocked. In that case, we sweep C
which requires barriers of length at most 2d1. We will show that the altered sweep
still decontaminates the polygon.

Assume that at some point there is a point z outside C that decontaminated
in the original sweep but contaminated in the modified one. Hence, z must been
recontaminated at some point. Let p be the recontamination path.

With this we have the final theorem.

theorem 46: The sweepwidth of a complex n-vertex polygon P can be approx-
imated with a factor of O(log n) in time O(n14 log4 n). A decontamination sweep
with that bottleneck length can be computed in O(n20 log4 n).

Proof. RP is obtained from the medial axis in time O(n log n) We apply the re-
sults from Section 2.5.1 on P′. Using Lemma 38, all cells are categorized in time
O(n14 log n). Note that the original value of RP and not RP′ will be used there. A
decontamination sweep is calculated for each connected component of full cells
with Lemma 42 in time O(n14 log4 n). By Theorem 37, this gives us a sweep with
bottleneck length O(log n · sw(P)) of P′.



2.5 complex polygons 31

To construct a sweep of P, we need to undo compressions. The proof of Lemma 45

describes how to handle barriers inside compressed regions. The constructed sweep
uses only barriers of the following types: constructing barriers around a node,
sweeping barriers around a node, or sweeping an area of empty cells between two
edges. For each pair of barrier and compressed edge, we can easily adapt the barrier
to the decompressed polygon in time O(1). We need to do this for O(n4) edges and
then O(n2) edges, taking time O(n14 log4 n · n4 · n2) (the number of barriers might
increase after the first decompression step).

We conclude this section with an interesting corollary. It is known that recontami-
nation does not help for node search [27], which implies that node search is in NP .
This is currently an open problem for decontamination sweeps [22]. Our results
imply that recontamination can only improve bottleneck length by a factor of O(1)
and that O(1) approximation of sweepwidth is in NP .

corollary 47: O(1) approximation of the sweepwidth of a complex polygon is in
NP .

2.5.4 Faster Algorithm

The above algorithm can be considered too slow for practical purposes. Therefore,
we give an algorithm for computing a sweep in time O(n log4 n). We follow the idea
from Section 2.4 in that we first compute the medial axis and then perform node
search on the graph induced by the medial axis.

theorem 48: A decontamination sweep of a complex n-vertex polygon P with
bottleneck length O(

√
n · RP) = O(

√
n · sw(P)) can be computed in time O(n log4 n).

Proof. The planar graph GP has pathwidth pw(GP) = O(
√

n) [4]. The rest follows
from above and Lemma 42.

remark 49: Similar to Section 2.4, a polygon P with sw(P) = θ(
√

n · RP) can be
constructed. Let P be an (2k + 1)× (2k + 1) square containing k× k unit squares
spaced equidistantly. It has n = Θ(k2) vertices. The medial axis graph is a (k +
1)× (k + 1) grid with one additional node at the four corner vertices. The grid has
pathwidth Θ(

√
n) [19].





3
D E C O N TA M I N AT I O N I N T H E R O B O T M O D E L

In this chapter, we develop algorithms to decontaminate environments with robots as
defined in Section 1.2.1. At first, we consider convex environments. An environment
is convex if its border nodes define a convex polygon when embedded into the
Euclidean plane. There, we will describe our algorithms in more detail introducing
the reader to key methods while allowing for a more abstract reasoning in later
sections. Afterwards, we present algorithms for environments with and without
holes. Our algorithms work with just a single robot and multiple robots can improve
their runtime. Finally, we show that deciding whether an environment can be
decontaminated using a certain number of tiles is NP-hard.

3.1 convex environments

Convex environments always have one of the following shapes:

definition 50: Consider a set of k ∈ {3, 4, 5, 6} lines through nodes of the triangu-
lar grid graph, each in direction N, NE, or NW. The nodes inside their intersection
form a shape, as shown in Figure 17.

– Three lines in directions N, NE, and NW form an equilateral triangle.
– Two sets of parallel lines form a parallelogram.
– Two parallel lines, plus one line in each remaining direction, form a trapezoid.
– Five lines, at most two in each direction, form a pentagon.
– Six lines, two in each direction, form a hexagon.

Usually, we will assume parallelograms to be aligned with directions N and NE,
consisting of ℓ columns (in N direction) and h rows (in NE direction). For trapezoids,
we define the height h as number of nodes in a shortest path between the parallel
lines (3 in the example).

Before describing the algorithms, we need to state some assumptions. Initially,
all tiles are arranged in a parallelogram that is placed on a line of the shape (see
Figure 20 (1)). We will also refer to them as stash. Their number shall be at least the
minimal number of tiles needed for the algorithm while not exceeding it by more
than a constant factor. The robots are placed on that parallelogram, filling columns N
to S, W to E. The northernmost robot of the first column shall be leader and all robots
share a common north and chirality. We consider this assumption to be reasonable
as leader election and shape formation are outside the scope of this thesis. One can
also imagine that most practical contexts would allow for a certain amount of control
on how robots and tiles are inserted (e. g., when injecting nanomatter for surgery).

For reference, shape formation has been studied by Gmyr et al. [15]. They describe
how to construct intermediate shapes without holes and from them simple convex
shapes. Note that their methods would have to be altered slightly in order to deal
with finite environments as they operate on an infinite grid graph. Leader election in
a connected configuration of m robots that do not share a common chirality or north

33



34 decontamination in the robot model

Figure 17: Convex shapes in the triangular grid graph defined as the inside of an intersection
of lines.

can be performed in O(m) rounds [10]. Therefor robots need to generate random
bits which is not unrealistic in practice. These results were obtained for the amoebot
model but are directly transferrable to our model since movement of robots is not
required.

Furthermore, the environment is guaranteed to have the shape for which we
describe the algorithm. Even if that were not the case, it would be easy to verify
the shape of the outline beforehand, using the stash as a marker when traversing
the outline to know when a traversal is complete. Holes inside the environment
can be recognized during the execution of the algorithm. Lastly, we assume the
environment to be sufficiently large, since the algorithms do not always take trivial
edge cases such as h = 1 into account.

3.1.1 Parallelograms

The parallelogram will be decontaminated by sweeping a line of tiles across its
longer side as depicted in Figure 18. That line consists of h tiles. The next lemma
shows that this optimal.

lemma 51: A parallelogram E consisting of ℓ rows and h columns, such that ℓ ≥ h,
has td(E) ≥ h.

Proof. We look at a sequence of tile movements decontaminating E and argue that
it uses at least h tiles. Consider the first tile movement after which every row and



3.1 convex environments 35

column contains at least one decontaminated node. W.l.o.g., a tile is moved into
a column C of only contaminated nodes. Afterwards, every row contains a tile:
Only one node of C is decontaminated. It contains a tile. Since no row is fully
contaminated, all other rows also contain a tile that separates the contaminated node
of C in that row from the decontaminated node.

The above lemma allows us to give a lower bound on the number of rounds
needed for the decontamination of simple environments by a single robot.

corollary 52: There exists an n-node environment E that cannot be decontami-
nated in less than Ω(n3/2) rounds by a single robot.

Proof. Consider an environment E , consisting of two k× k parallelograms, joined
together by a line of length k2. E has n = Θ(k2) nodes. If the stash is inside one of
the parallelograms, then k tiles need to be transported to the other one, which takes
Ω(k3) = Ω(n3/2) rounds.

Figure 18: Decontaminating a parallelogram by sweeping it with a line of tiles.

The algorithm will consist of three fundamental steps:
1. Determine the shorter side of the parallelogram.
2. Construct a line along the shorter side.
3. Move the line across the parallelogram.
First, we describe the algorithm for a single robot. To determine the shorter

side, the robot builds a line as depicted in Figure 19a. If the number of tiles is
insufficient to build a full line, we attempted to build the line along the longer side
and need to rebuild it on the other side. We continue by sweeping the line across the
parallelogram. Note that the line might still be parallel to the longer side, if excess
tiles are present, which does not affect the results. Alternatively, the shorter side can
be determined exactly by building a diagonal as in Figure 19b. It always ends on the
longer side.

lemma 53: A single robot can construct a line as shown in Figure 19b in O(h · ℓ)
rounds.

Proof. This line is built by repeatedly taking a tile from the stash and moving along
the outline of the parallelogram to the most NW node. From there, the robot moves



36 decontamination in the robot model

(a) Building a line with excess tiles to
sweep the parallelogram.

(b) Detecting the shorter side of a par-
allelogram by building a diagonal.

Figure 19: Preliminary steps before sweeping the parallelogram.

SE as far as possible, over the line that was already built, and drops the tile or halts
if the line has reached another side of the parallelogram.

Afterwards, a new tile needs to be picked up. If the line is connected to the stash,
the robot can take any northernmost tile in a column of the stash intersecting the
diagonal (see gray tiles in the figure). This guarantees connectivity, since the tiles
south of that tile are either connected to a border node or the line. Otherwise, the
robot moves back over the line to the stash and takes any northernmost tile from
there.

To bring a tile from the stash to the end of the line, O(ℓ) rounds are needed, for a
total of O(h · ℓ) rounds.

Consider the task of building the line for sweeping. W.l.o.g., the longer side is
parallel to the axis from SW to NE. If there are excess tiles, we build O(1) additional
lines, the first of which possibly being partial. The empty space in the partial line is
decontaminated as indicated by the green arrows.

lemma 54: A single robot can construct a line with excess tiles as shown in Fig-
ure 19a in O(h · ℓ) rounds.

Proof. This can be done similarly to Lemma 53.

Finally, the parallelogram is decontaminated by moving the line NE until it reaches
the outline.

lemma 55: A single robot can decontaminate the parallelogram in O(h · ℓ) rounds
using h tiles, which is asymptotically optimal.

Proof. We construct the line using Lemma 54 and move it to the eastern border
of the parallelogram. To move the line east by one step, the robot moves each tile
NE, starting with the southernmost tile. This preserves connectivity and leaves the
column formerly occupied by the line decontaminated. Each movement of the line
takes O(h) rounds, for a total of O(h · ℓ) rounds.



3.1 convex environments 37

To decontaminate the environment, at some point a tile needs to be placed onto
each of the h · ℓ nodes, requiring at least one round per node. Therefore, Ω(h · ℓ)
rounds are required for decontamination.

In the following, we will discuss how to use multiple robots to speed up the
process of decontaminating a parallelogram. Recall that the only assumption we can
make about the activation order of robots is that any robot will be activated after
a finite amount of time. However, a round is only over after each robot has been
activated at least once. There shall be m ≤ h robots.

lemma 56: m robots can construct a line as shown in Figure 19a in O(h · ℓ/m)

rounds.

Proof. The steps of the algorithm are illustrated in Figure 20. Initially, the robots
are located on the stash (1). If the stash already borders the western border of the
parallelogram, the robots shall start on the second column. The leader (red) begins by
picking up its tile. Afterwards, the robot to its south may pick up its tile, continuing
until all robots in the column have picked up their tile (2). The last robot in the
column then signals to the leader that they may start moving. Signal passing can
easily be implemented by reading and modifying states of adjacent robots. Before the
last robot leaves the column, it signals to the southernmost robot of the next column
that its column may start moving as well, if the next column exists and is already
occupied. The last column needs to be handled differently to ensure connectivity;
the northernmost robot starts and moves along the column’s side, as indicated in (5).
The robot signals its former southern neighbor to follow upon reaching its SW.

The robots with a tile travel to the westernmost empty column and fill it with tiles
from N to S (3). Robots from different column may travel concurrently. Once the last
robot has transported its tile, it notifies the leader (4). If the robots are spread across
two different columns, the last robot will need to move to the leader (6).

Afterwards, all robots travel back onto the stash (5) and continue as described
previously. In case not all robots fit onto the stash, they wait next to the stash. Once
the stash has been cleared (6), the leader establishes the final line (7). Robots waiting
where the stash once was are notified and all robots position themselves next to the
line as in (8) to prepare for moving the line.

Each movement phase, of which there are O(h/m), can be carried out in O(ℓ)

rounds due to the concurrent movement of robots: We show that m robots can travel
ℓ steps in time O(ℓ+ m) inductively, by proving that robot k (k = 0 being the first
robot) takes at least t steps in t + k rounds, for any t ≥ 0. For k = 0, the first robot
clearly takes at least t steps in t rounds. If robot k− 1 takes t+ 1 steps in t+ k rounds,
then robot k can take t steps in t + k rounds.

The centralized nature of the algorithm makes the absence of locking conditions
obvious. Note that the same construction can be performed largely without syn-
chronization by the leader. However, there the number of rounds required is less
obvious.

The final step of the algorithm is to sweep the line across the parallelogram. We
will describe next how to do that with multiple robots and linear speedup.

lemma 57: m robots can move a line across the parallelogram in O(h · ℓ/m) rounds.



38 decontamination in the robot model

Figure 20: Constructing a line with multiple robots.

Proof. The idea is to execute the line movement from Lemma 55 in a pipelined
manner. Initially, the robots shall be arranged as in Figure 20 (8). Each robot operates
in two phases. First, it traverses the line from N to S and moves each tile NE.
Afterwards, it moves S along the line’s eastern border. Consequently, the robots
essentially cycle around the line, as indicated by the red arrows in Figure 21.

A robot r in the first phase checks if there is a tile at NW or N. It waits until there
is an empty tile at N (see robot a). Then r picks up its tile. If the node at NE is
unoccupied, r moves and places its tile there (robot b has just done that). Otherwise,
it passes its tile to the robot r′ at NE and then moves N (see robot c). It further
modifies the state of r′ to indicate to a robot N of r′ (see robot d) that it may not
move to the NE of r′. There, it waits until r′ has placed the tile. r′ places the tile and
moves NE, if it is not in the easternmost column, and continues in the second phase.

If there is no tile at NW or N, r has reached the line’s northernmost tile. Then it
waits until the node at NE is empty and picks its tile up and places it there. If there



3.1 convex environments 39

Figure 21: Moving a line across the parallelogram with multiple robots.

is still an empty node at NE, i. e., the sweep is not yet finished, r moves there and
goes into the second phase. Otherwise r halts.

Robots in the second phase just follow the line S until they either reach the line’s
southernmost tile and switch to the first phase, or until they are north of a tile on
a border node and move S waiting for the completion of the sweep which will be
accomplished by the robots remaining on the line.

The line and its eastern neighborhood (see red path in Figure 21) is never fully
occupied by robots because m ≤ h. Hence, there is always progress. Note that robots
only ever have to wait more than O(1) rounds for the robot directly in front of them
along the path around the line. Thus, the arguments from the proof of Lemma 56

can be applied to show that all robots can traverse the line once as described above
in O(h) rounds, halting in their starting position relative to the line (i. e., arranged as
in Figure 20 (8)). Afterwards, the line was moved by m steps. Clearly, this also works
if the robots do not halt after one traversal but continue until the sweep is finished.
Hence, O(h · ℓ/m) rounds are needed in total.

theorem 58: m robots can decontaminate a parallelogram in O(h · ℓ/m) time using
h tiles, which is asymptotically optimal.

Proof. First, a line is built using Lemma 56. If the number of tiles is insufficient, i. e.,
the line was built on the wrong side, it is rebuilt at an adjacent side of the parallelo-
gram. Afterwards, the line is swept across the parallelogram using Lemma 57.

Optimality follows from the fact that h ·m nodes need to be decontaminated which
corresponds to that number of activations of a robot. With m robots, Ω(h · ℓ/m)

rounds are needed. Note that having more than h robots could not improve the
runtime since Ω(ℓ) rounds are always needed for transporting a tile from the stash
to the furthest node.

3.1.2 Triangles and Trapezoids

Triangles and trapezoids can be decontaminated similarly to parallelograms, with
the key difference that the line is shortened by one after each step of the sweep, as
depicted in Figure 22.



40 decontamination in the robot model

Figure 22: Decontaminating a triangle by sweeping it with a line of tiles.

lemma 59: A single robot can decontaminate a triangle with side length h in O(h2)

rounds using h tiles. Ω(h) tiles are always required.

Proof. First, the line is built as in Lemma 54. The line is then moved across the shape,
similar to Lemma 55, with the difference that the northernmost tile of the line is not
moved NE (see Figure 22).

A triangle with side length h contains an ⌊h/2⌋ × ⌊h/2⌋ parallelogram. Hence,
Ω(h) tiles are required by Lemma 51.

We conjecture that h tiles are needed to decontaminate a triangle of side length h.
To decontaminate triangles with multiple robots, we need to ensure that robots

leave the line after traversing it, once the line’s length has reached m because our
pipelined sweeping algorithm only achieves the desired speedup if the number of
robots does not exceed the length.

theorem 60: m robots can decontaminate a triangle with side length h in O(h2/m)

rounds using h tiles, which is asymptotically optimal.

Proof. Assume the triangle to be oriented as in Figure 22. After building the line as
in Theorem 58, a robot is placed on the triangle’s NE border, at distance m from
the easternmost node to mark the point where robots have to leave the line after
traversal instead of continuing to move around it. This can be done in O(h) rounds
by moving the robots along the outline in counterclockwise direction until the leader
has reached the easternmost node. The other robots will build up along the NE side,
forming a line. The last robot in that line shall stay there.

We can now perform the sweep as in Lemma 57. When the line reaches the marker,
robots leaving the line move onto the tile that is left behind and signal to the next
robot finishing its traversal to do the same. The marker moves out of the way once it
encounters the first robot. Thus, the sweep is completed in O(h2/m) rounds, which
is asymptotically optimal as previously.

corollary 61: m robots can decontaminate a trapezoid with height h and longest
side length ℓ using h tiles in O(h · ℓ/m) rounds, which is asymptotically optimal.



3.2 simple environments 41

Proof. A parallelogram can be obtained from the trapezoid by cutting off a triangle
of height h at one end. Therefore, a line is moved across the trapezoid like on
a parallelogram until it reaches the triangle where it continues as described in
Theorem 60.

3.1.3 Pentagons and Hexagons

Consider a pentagon or hexagon. Let h be the minimal distance between parallel lines
and ℓ the maximal distance between any two nodes on the shape. It contains Ω(h · ℓ)
nodes. For decontamination, we subdivide the environment into simpler shapes
using diagonals from corners, and then decontaminate these shapes separately.

theorem 62: m robots can decontaminate a pentagon or hexagon in O(h · ℓ/m)

rounds using O(h) tiles, which is asymptotically optimal.

Proof. The first step is to build a line along one of the sides with a length of at most
h using Lemma 56. From then on, we can view the line as a side and never move its
tiles. Only the tiles behind the line will be used. This makes efficient construction of
lines with multiple robots trivial since there is no stash inside the shape.

We subdivide a pentagon using a single line, and a hexagon with potentially
two lines, as depicted in Figure 23. The construction of these lines is attempted
without regard to their length. If the number of tiles is insufficient, the lines are
removed again and reconstructed in a different direction (see the red dotted line).
The resulting shapes between the lines are triangles, parallelograms, and trapezoids.
They are decontaminated separately using O(h) tiles.

Figure 23: Subdividing pentagons and hexagons into triangles, parallelograms, and trape-
zoids.

3.2 simple environments

For the decontamination of simple environments, we will use a strategy similar to
that proposed in Section 2.4 for simple polygons. Let s be some border node. The
remaining nodes are partitioned into layers by their distance from the source s, as
depicted in Figure 24.

lemma 63: The connected components (or barriers) of a layer are lines starting
and ending on border nodes with only 120◦ angles in the direction of the previous
barrier.

Proof. This is clearly true for the first layer. Now consider some barrier U and a walk
W around U in the underlying lattice graph. If we exclude the previous barrier from



42 decontamination in the robot model

Figure 24: Layers in a simple environment such that the nodes of the same layer have equal
distance to the source node (blue). Connected components of layers such that the
neighboring nodes of the next layer are not connected are colored red.

W, then W is a line with only 120◦ angles in the direction of U. The barriers V1, . . . , Vk
in the next layer adjacent to U are the connected components of the intersection of
W and E . Hence, they start and end on a border node and have only 120◦ angles.
Since the environment is simple, the neighborhoods of two barriers in the next layer
are disjoint.

The decontamination starts by placing a tile on the source node s. Afterwards, tiles
are placed on the next layer to form a new barrier and subsequently removed from
the previous layer. Repeating this procedure, the next layer might be disconnected at
some point. Let U be the set of nodes of a barrier, such that the barriers V1, . . . , Vk
are the connected components of the next layer. In the example, U would be the
first red barrier and V1, V2, V3 the gray barriers adjacent to it. The removal of U
would disconnect E such that the Vi are part of different connected components
because E is simple. These components are decontaminated recursively while the
barrier U remains. Similar to Algorithm 1, the Vj with the longest outline will be
decontaminated last. U is removed after the construction of barrier Vj.

Before describing these steps in more detail, we need to discuss how to handle
the stash. It is assumed to be connected and placed somewhere on the border, such
that the nodes not containing tiles of the stash are connected. The barrier formed by
those nodes containing stash tiles that also have a neighboring empty node (i. e., the
nodes separating the stash from the rest of the E ) will be treated just like the outline.
Thus, we assume that the number of tiles behind that barrier is sufficient to perform
decontamination. The barrier is marked using local tile patterns on its inside, near
the start and end. We assume the stash to be of sufficient dimensions for this. We
will also use tiles to mark certain barriers. These patterns are defined by their shape
and number of tiles, e. g., a single tile on a barrier or two tiles. We will not always
define them formally, but it will be obvious that they can be constructed.



3.2 simple environments 43

As a further simplification, we assume that environments are free of bottlenecks, i. e.,
nodes whose removal would disconnect the neighborhood locally (e. g., the single
red barrier in Figure 24). This is equivalent to 2-connectivity for simple environments.
Thus, nodes are only visited once when traversing the outline, which makes traversal
of the outline by multiple robots trivial1 and allows us to mark positions on the
outline with tiles easily. We further require that the stash is placed in a way such
that treating it as part of the outline does not lead to bottlenecks.

The next lemmas show that the length of a barrier is bounded by O(td(E)) =

O(
√

n).

lemma 64: It holds that O(td(E)) = O(
√

n).

Proof. It is trivial to transform a node-search strategy S on E into a sequence
of tile movements, such that ns(E ,S) tiles decontaminate E . Since E is planar,
ns(E) = O(

√
n) [4].

lemma 65: If the algorithm outlined above constructs a barrier of length ℓ, then
td(E) = Ω(ℓ).

Proof. The idea is that barriers only increase in length by O(1) in each layer. Therefore,
a hexagon with radius Ω(ℓ) fits into the area that is taken up by the barriers growing
to length ℓ.

For a barrier of length ℓ to be constructed, the barrier on the previous layer
had to have length at least ℓ− δ, for some sufficiently large δ = O(1). Therefore,
there are connected barriers V1, . . . , Vk, k = Θ(ℓ) on subsequent layers such that
|Vk−i| ≥ ℓ− iδ and |V1| ≥ ℓ/2 (these barriers are usually not present at the same
time during decontamination). Note that barriers may become shorter or separated
in the next layer. By removing nodes from E , we can ensure that |Vi| ≤ |Vi+1| and
that nodes in Vi for 2 < i < k are only adjacent to nodes in Vi+j, j ∈ {−1, 0, 1}.
Consequently, only the nodes in Vi, i < k at distance at most δ from the end of their
barrier are on a border node. Also, if v ∈ Vi, w ∈ Vi±1 and v has minimal distance dv

to a border node in Vi, then dw ≥ dv − δ.
Let u ∈ V⌊k/2⌋ be a node in the middle of the barrier. u has a distance of at least

ℓ− kδ/2− δ to the border nodes in V⌊k/2⌋. Consider a path from u to a border node.
It has length Ω(ℓ) because the distance to a border node in the current layer can
only decrease by at most δ with each step. Thus, a regular hexagon with radius Ω(ℓ)

fits into E .

In the following, we describe how to compare the lengths of outlines with a single
robot. Since robots have only constant memory size, we cannot just count the number
of nodes. Let ol(E) be the length of the environment’s outline, i. e., the number of
border nodes in E . Note that for a partial environment E ′ in E , we count only those
border nodes of E ′ towards ol(E ′) that are also border nodes in E .

lemma 66: Consider a barrier U with disconnected next barriers V1, . . . , Vk, as
described above. Let E1, . . . , Ek be the connected components obtained from E after
removing U such that Vi is in Ei, and ℓ1 ≥ · · · ≥ ℓk, ℓi = ol(Ei). A single robot can
determine E1 in O(ℓ2 · (|U|+ ℓ̂)) rounds, where ℓ̂ := ∑k

i=2 ℓi.

1 Protocols for handling bottlenecks when traversing the outline with multiple robots can be devised but
we were unable to construct one with acceptable slowdown.



44 decontamination in the robot model

Proof. We place a tile on each outline, next to the first node of the corresponding
barrier Vi. Then, the robot repeatedly moves each tile forward once until all but one
tile have reached their barrier Vi again. Forward movement of tiles is well defined
due to 2-connectivity of E . Each iteration can be accomplished in O(|U|+ ℓ̂) rounds
by moving along U and that part of the outline of E containing the outlines of the Ei.
If ℓ1 = ℓ2, then the tile reaching its barrier last is declared to be on E1. Otherwise,
only the tile on E1 has not reached its barrier again after ℓ2 iterations. Hence, E1 is
determined after O(ℓ2(|U|+ ℓ̂)) rounds.

Using this algorithm, we can describe how to decontaminate a simple environment.

theorem 67: A single robot can decontaminate a simple n-node environment E in
O(n2) rounds using O(log n · td(E)) tiles.

Proof. In the following, we first describe the algorithm and then analyze the number
of rounds and tiles required.

We use the algorithm outlined at the beginning of this section. This is trivial until
a barrier U has multiple next barriers. In that case, we use Lemma 66 to determine
and mark the barrier Vj associated with the longest outline. Note that the robot
only constructs the next barriers Vi once it starts decontaminating the associated
outline. Since barriers contain at least two nodes, there is sufficient space to place a
tile as marker that can be distinguished from a barrier. We distinguish barriers under
construction and markers by placing markers on the right and constructing barriers
from the left.

Now, we want to apply the algorithm recursively on all Vi, i ̸= j. For this, the
robot needs to access the stash when the length of subsequent barriers changes. The
robot can find the stash by simply traversing the outline of E . It returns by following
the path of barriers, traversing the outline of E between barriers. We allow the robot
to detect the path locally by keeping the first barrier after a split during recursion on
the associated outline. This takes O(n) rounds.

After recursion on Vi is finished, we remove that barrier, which can be done in a
way similar to building a barrier. The previous barrier when returning from recursion
is always the first one that can be reached by following the outline. We remove barrier
U once only Vj remains, which is then moved forward until the next barrier has
multiple components or E is fully decontaminated.

For building barriers, O(n2) rounds are sufficient since each node is part of one
barrier and bringing a tile there from the stash takes O(n) rounds. Tiles used for
markers can also be transported in O(n2) total rounds since O(n) markers are used
throughout the execution.

For comparing outline lengths, let us split the number of rounds from Lemma 66

into two parts, namely traversals of the barrier U and traversals of Ei’s outlines. Each
node is only part of a single barrier, which is clearly traversed at most O(n) times
for comparing outlines. Hence, traversals of barriers account for O(n2) rounds.

For traversals of the outlines, consider the main path, i. e., the path of barriers
with longest associated outlines, starting in the source node, and disregard all other
recursions for now. This corresponds to only considering the recursive calls from
line 9 in Algorithm 1. From each barrier U of the main path, only one comparison
is run. Also, the outlines that are split off by U and not part of the main path are
not used for further comparisons from the main path. Hence, the total number of



3.2 simple environments 45

nodes traversed by the tiles from Lemma 66 for barriers U of the main path is at
most ℓ = ol(E). Therefore, the robot uses O(ℓ2) rounds moving along the outlines of
E1, . . . , Ek. Thus, O(ℓ2) rounds are used for the main path.

Let T(ℓ) be the maximal number of rounds used for traversing the outline when
comparing outlines. For the main path, at most αℓ2 rounds are needed for some
constant α ≥ 1. For environments E1, . . . , Ek split off from the main path, we have
ℓi ≤ ℓ/2 for ℓi = ol(Ei) and ∑k

i=1 ℓi ≤ ℓ. Hence, ∑k
i=1 T(ℓi) rounds are used for

comparing outlines in E1, . . . , Ek. Therefore, T(ℓ) ≤ maxvalid k,ℓ1,...,ℓk ∑k
i=1 T(ℓi) + αℓ2.

We will show by induction that T(ℓ) ≤ 2αℓ2. For ℓ = 1 this is obvious, given T(1) = 1.
For ℓ > 1, we have ∑k

i=1 T(ℓi) ≤ ∑k
i=1 2αℓ2

i ≤ αℓ2, since ℓi ≤ ℓ/2 and ∑k
i=1 ℓi ≤ ℓ.

Thus, T(ℓ) ≤ 2αℓ2, which means that O(n2) rounds are used for comparing outlines.
Regarding the number of tiles needed, notice that there is never more than one

barrier on the main path. Also, the length of outlines is at least halved in recursions.
Therefore, at most log n barriers are present at the same time. By Lemma 65, we need
O(log n · td(E)) tiles in total.

remark 68: Similar to Remark 26, we can argue that the approximation factor
O(log n) is tight and that there are environments where an approximation factor of
O(1) is achieved.

Proof. The example from Remark 26 can be embedded as an environment E with n =

Θ(kc) nodes for some constant c. Note that we need lines of width 2 for 2-connectivity.
It holds that td(E) = Θ(k), but our algorithm needs Θ(k log k) = Θ(k log n) tiles.

Similarly, we can use lines to build a tree-like environment E with n nodes such
that the graph E has pw(E) = Θ(log n). Our algorithm will only use O(log n)
tiles.

We conjecture that the time bound of O(n2) can be improved by using temporary
stashes instead of bringing tiles all the way back to the stash. However, it appears to
be difficult to decide where and when to erect temporary stashes of which size.

Now, we consider how to use multiple robots to decrease the number of rounds
needed by the algorithm. The general idea remains unchanged, but we will use a
different algorithm for comparing outlines. Moreover, the additional robots shall
follow the current barrier, taking up tiles when the barrier decreases in size and
providing tiles when it increases. Hence, multiple tiles can be brought from and to
the stash at once.

lemma 69: Consider a barrier U with disconnected next barriers V1, . . . , Vk, as
in Lemma 66. Let E1, . . . , Ek be the connected components obtained from E after
removing U such that Vi is in Ei, and ℓ1 ≥ · · · ≥ ℓk, ℓi = ol(Ei). m ≥ log ℓ2 robots
can determine E1 in O(log2 ℓ2 · (|U|+ ℓ̂)) rounds, where ℓ̂ := ∑k

i=2 ℓi.

Proof. The idea is to use the algorithm from Lemma 66, but move the tiles by 2t steps
along the outline in iteration t. This is easy to do for t = 0 using only the leader.
For each iteration t > 0, the leader maintains a connected tail of t robots, which
follow when traversing outlines or U. This works since E is 2-connected, which
implies that the leader never needs to move onto a node occupied by the tail when
traversing an outline. The remaining robots are assumed to be parked along the
outline of E , behind U. After every iteration, one robot is added to the tail. The tail



46 decontamination in the robot model

can now implement a shared counter, each robot storing one bit, starting with the
least significant bit in the leader up to the most significant bit in the tail’s last robot.
The counter allows us to move tiles by 2t steps.

Moving one step together with the tail and incrementing the counter once can be
done in O(t) = O(log ℓ) rounds. After iteration t, every tile has either reached its
barrier or was moved 2t+1− 1 steps in total. Hence, O(log ℓ2) iterations are sufficient.
Each iteration takes O(log ℓ2 · (|U|+ ℓ̂)) rounds for a total of O(log2 ℓ2 · (|U|+ ℓ̂)).

If there is an iteration after which only one tile has not reached its barrier yet,
we have identified E1. Otherwise, ℓ1 ≤ 2ℓ2. In that case, we find E1 by measuring
each outline using the counter. A second counter maintains the maximum length
measured so far. Comparing and updating counters takes O(log ℓ2) rounds. After
determining ℓ1, the robots traverse the outlines once again to find an outline of that
length, belonging to E1. This takes O(log ℓ2 · (|U|+ ℓ̂)) rounds.

Note that the above technique can in principle be performed by a single robot and
a tail of tiles representing a binary counter. However, distinguishing tiles part of the
counter from other markers and barriers introduces some technical challenges.

theorem 70: If log n ≤ m ≤ td(E), m robots can decontaminate a simple n-node
environment E in O(n2/m) rounds using O(log n · td(E)) tiles.

Proof. We use the approach from Theorem 67. First, we describe how to use multiple
robots to speed up constructing barriers and then analyze the runtime for comparing
outlines with Lemma 69.

Initially, ⌊m/2⌋ of the robots shall pick up tiles from the stash. Trivially, it can be
done in O(m2) = O(n) rounds. The robots form a tail, following their leader along
the outline. Therefore, O(m) rounds are needed to advance all robots by one step
along the outline. The leader constructs barriers as previously. Now it can get tiles
from the tail, in O(td(E)) rounds each. When the tail does not have tiles anymore,
it moves to the stash to pick up ⌊m/2⌋ tiles again, in O(n) rounds. Barriers are
removed in the same way.

Hence, the construction or removal of a barrier requires O(td(E)) rounds plus
the number of rounds used for carrying tiles from and to the stash. O(n) tiles are
carried in total, but always at least m/2 together. Thus, O(n2/m) rounds are used
for carrying tiles and O(n · td(E)) = O(n2/m) for constructing barriers. The runtime
for moving to the next barrier after recursion can be amortized via the costs of
constructing the barriers in between.

The runtime for comparing outlines is analyzed as in Theorem 67, using the same
terminology. Each barrier U is traversed O(log2 n) times by the algorithm from
Lemma 69, using O(n log3 n) rounds in total.



3.3 complex environments 47

We have T(ℓ) ≤ maxvalid k,l1,...,lk ∑k
i=1 T(ℓi) + αℓ log2 ℓ for some constant α > 1,

where k, ℓ1, . . . ℓk is valid if ℓi ≤ ℓ/2 for all i and ∑k
i=1 ℓi ≤ ℓ. By induction, we prove

T(ℓ) ≤ 2αℓ log3 ℓ. This clearly holds for ℓ = 1. For ℓ > 1, we obtain

T(ℓ) ≤ max
valid k,ℓ1,...,ℓk

k

∑
i=1

T(ℓi) + αℓ log2 ℓ

≤ max
valid k,ℓ1,...,ℓk

k

∑
i=1

2αℓi log3 ℓi + αℓ log2 ℓ

≤ α(2ℓ log3(ℓ/2) + ℓ log2 ℓ)

= αℓ(2(log ℓ− 1)3 + log2 ℓ)

= αℓ(2(log3 ℓ− 3 log2 ℓ+ 3 log ℓ− 1) + log2 ℓ)

= αℓ(2 log3 ℓ− 5 log2 ℓ+ 6 log ℓ− 2)

≤ 2αℓ log3 ℓ .

Hence, all outline comparisons are done in O(n log3 n) = O(n2/m) rounds.

corollary 71: If log n ≤ m ≤
√

n, m robots can decontaminate a simple n-node
environment E in O(n2/m) rounds, using O(log n · td(E) + m) tiles.

Proof. Analogous to Theorem 70, with the difference that we might need more tiles
to ensure that at least half of the robots can carry a tile. Also, the construction of
each barrier takes O(m + td(E)) rounds. Hence, m ≤

√
n is necessary to achieve the

speedup.

3.3 complex environments

To decontaminate complex environments E , we use a simple algorithm that moves a
straight line barrier across the environment, similar to the algorithm for parallelo-
grams. This line might be split into separate connected components (see Figure 25).

Figure 25: Barriers in a complex environment.

The assumptions from the previous section shall still hold, namely the absence of
bottlenecks and the structure of the stash. Moreover, we assume no holes to be in
contact with the stash.



48 decontamination in the robot model

The number of tiles required is determined by the maximum number of nodes
in the same column of E , i. e., nodes having the same x-coordinate, assuming a line
in N direction (5 in the example). The difficult aspect of this algorithm is that the
barrier has components not connected to the previous barrier (see the right barrier
in the example).

Let us first describe the algorithm in terms of a single robot with a memory
of Θ(log n) bits. We further allow the robot to mark tiles, i. e., store O(1) bits of
information in tiles. These simplifications shall be removed afterwards. The key
component is building a barrier at some x-coordinate, which is accomplished using
Algorithm 2.



3.3 complex environments 49

Algorithm 2 Algorithm to place tiles on all nodes with x-coordinate x0.

1: procedure BuildLines(x0) ▷ Robot is initially on the outer outline.
2: for empty node u on current outline at x0 do
3: Build maximal line from u in N/S direction using GetTile.
4: if u at N of line and line has length ≥ 2 then
5: ▷ Lines of length 1 do not connect different outlines due to the

absence of bottlenecks.
6: Mark S of line as potential edge.

7: for node u on current outline at x0 do
8: if tile on u is marked as potential edge then
9: Remove potential edge mark from current tile.

10: for node u on current outline at x0 do
11: if tile v on the other side of u is marked as potential edge then
12: Mark u and v as edge and remove potential edge mark.
13: Move to S of line.
14: BuildBarrier(x0)
15: Move to N of line.
16: if exists node u on current outline S of a line and marked edge then
17: Move to N of line.
18: else
19: Done.

20: procedure GetTile ▷ Robot currently on a line.
21: Move to N of current line.
22: Mark current tile as start.
23: repeat
24: Traverse current outline until finding the stash or an incoming edge line.
25: if edge line found then
26: Move N to start of line.
27: Mark current tile as path.

28: until stash found
29: repeat
30: Traverse current outline until finding a path or start tile.
31: Remove path or start marker.
32: if path tile found then
33: Move S to end of line.
34: until start found

lemma 72: If E contains h nodes at x-coordinate x0, then a single robot with a
memory of Θ(log n) bits, containing x0, and the ability to mark tiles, can place tiles
on all these nodes in O(h · n) rounds.

Proof. Algorithm 2 is executed, which is illustrated abstractly in Figure 26.
Possibly multiple lines need to be build, connecting different outlines. The idea

is to build these lines in a DFS order (depth-first search), starting with lines from
the outer outline. Certain lines shall be marked to form a DFS tree of all relevant



50 decontamination in the robot model

Figure 26: Building a barrier at a specific x-coordinate in a complex environment.

outlines. All tree edges shall be directed from N to S. This is essentially done with
the BuildLines procedure, whose correctness we argue next.

The potential edge marks are used to detect which lines connect different outlines.
They are removed in line 9 when a line is encountered twice from the same outline.
Afterwards, only potential edge marks on lines to a different outline remain. Note that
multiple potential edges to the same outline may still exist. They will be removed in
the recursion from line 14, after one of the potential edges has been converted to an
edge. After visiting an outline, no new potential edges towards it can be declared
because all lines at that outline have already been built. Hence, the edges form a tree.

Now, assume that the robot does not visit an outline containing an x0 node and
among those, consider the outline with the northernmost x0 node v. Therefore, the
outline north of v has been visited and a line was built from a node u to v. Then v
was marked potential edge. The potential edge mark on v could not have been removed
since u and v are on different outlines and v’s outline was never visited. But then u
and v would have been marked edge in line 12. Afterwards, the outline of v would
be traversed from line 14. Hence, a DFS tree is constructed as intended and all lines
are built.

The GetTile procedure simply uses the edges to the current outline backwards to
reach the outer outline where the stash is located. Used edges are marked so that the
robot can return to where the tile is needed. Note that the robot shall always carry
a tile such that it can at least place the first tile when building a new line which is
then used to mark where to return.

Regarding runtime, each outline is entered at most once and traversed four times
in BuildLines, which takes O(n) rounds in total. Each call to GetTile takes O(n)
rounds as well. The algorithm terminates after O(h · n) rounds, since it places h tiles.



3.3 complex environments 51

For additional clarity, we describe the algorithm based on the example from
Figure 26. Outlines are traversed using the right-hand rule, i. e., as if a person was
walking around the outline while touching it with their right hand. The robot starts
on the outer outline and builds the lines 1, 2, 3, and 4. 1, 3, and 4 are marked as
potential edges. After another traversal, these marks are removed from 1 and 3. 4 is
marked edge and a recursion is performed. Lines 5, 6, 7, and 8 are created. Potential
edges are initially 5, 6, and 8 and after another traversal only 6 and 8. 6 is marked
edge and a recursion occurs. Line 9 is created and the robot returns using 6. It
continues to 8 and marks 8 as an edge. Then the robot follows 8 and, after one
traversal, returns along 8, then 4, and finally terminates.

lemma 73: Let h be the maximum number of nodes within the same column of E
and ℓ the number of columns. A single robot with a memory of Θ(log n) bits and
the ability to mark tiles can decontaminate an environment E in O(n2) rounds using
O(h) tiles.

Proof. First, the robot walks along the outer outline to determine the minimum
x-coordinate, using the initial position as reference. It declares the minimum to be
at x = 0 and builds barriers there using Algorithm 2. Then, for k = 1, . . . , ℓ− 1, a
barrier is built at x = k and the barrier from x = k− 1 is subsequently removed.
Removing barriers is similar to building barriers; for each outline, all lines adjacent
to descendants are removed recursively. The incoming edge is removed last from an
outline.

Correctness is obvious. Placing and removing a tile from each node uses O(n2)

rounds. BuildLines is run ℓ times, using O(ℓ · n) rounds in total to traverse outlines.
These bounds are tight for the given algorithm. It is easy to construct an environ-

ment where the distance between nearly subsequent barriers is Ω(n).

The next step is to adapt the previous algorithms to work with our usual model,
i. e., without counters and marking tiles. Therefor we again use a tail of robots or
tiles as counter and tiles as markers. However, whereas only one tile on each outline
as well as one tile next to each barrier was sufficient in the previous section, this is
clearly not the case here. We impose further restrictions on E to make enough room
for the different markers and a tail. Specifically, we assume that E was constructed
from an environment E ′ without bottlenecks by replacing each node in E ′ with a
hexagon of a sufficiently large radius r = O(1). The algorithm on E ′ is simulated by
building partially hollow hexagons of radius r instead of placing tiles. We construct
these hexagons in a way such that they can store O(1) bits of information as well as
contain a tail of robots or tiles.

theorem 74: Let h be the maximum number of nodes within the same column
of an environment E constructed from E ′ as described above and ℓ the number of
columns. A single robot can decontaminate an environment E in O(n2 + ℓ · n log n)
rounds using O(h) tiles.

Proof. The algorithm from Lemma 73 on E ′ is simulated on E . The robot maintains
a tail of Θ(log n) tiles to serve as memory. It does not need to know that value.
Instead, it extends the tail when the need arises. Hence, each round from Lemma 73



52 decontamination in the robot model

when traversing an outline requires Θ(log n) rounds to simulate. Tiles can still be
transported in O(n) rounds each because GetTile does not use the counter.

remark 75: Theorem 74 can also detect holes by checking whether Algorithm 2

marks an edge at some point.

theorem 76: m robots can decontaminate an environment E in O(n2/m + ℓ · n ·
(log n + m)) rounds using O(h + m) tiles.

Proof. The m robots form a tail, similar to the previous section. GetTile is now run
by all robots together. Note that only the first robot needs to mark tiles. Hence, m
tiles can be transported in O(n) rounds.

Note that a speedup is only achieved if ℓ · (log n+m) = o(n). In a practical context,
one might assume the environment to fit inside a hexagon of radius Θ(

√
n). In that

case, a runtime of O(n7/4) is achievable with m = n1/4. More robots would make the
algorithm slower.

Figure 27: Measuring the width of an environment using lines in different directions. Arrows
indicate how to count when traversing the outline.

Before executing the algorithm, h can be upper bounded by measuring the width
w(E), which is defined similarly to the width of a polygon. w(E) shall be the
maximum distance of two parallel lines containing nodes of E , which have either
direction N, NW, NE, or are orthogonal to such a direction. This is visualized
in Figure 27 with lines in NW direction (left) and lines orthogonal to N (right).
Width can now be measured by traversing the outline and maintaining a counter
as indicated by the arrows. The difference between the observed minimum and
maximum is the width.

Barriers can then be built in a direction to minimize width. Alternatively, we
can also employ the trick from Section 3.1 where the algorithm is restarted if the
number of tiles is insufficient, guaranteeing decontamination when it is known that
the number of tiles is sufficient for barriers in one of the three directions.

3.4 complexity

In this section, we will show that determining whether a given environment can
be decontaminated with s tiles is NP-hard. This is done using a relatively straight-
forward reduction from edge search on planar graphs with maximum node degree
three.



3.4 complexity 53

Given an n-node planar graph G = (V, E) with maximum node degree 3 and an
integer s, deciding whether es(G) ≤ s is NP-complete [32]. We shall construct an
environment E with td(E) = es(G).

There exists a planar orthogonal drawing of G with area O(n2), i. e., a drawing
without edge crossings in which all nodes have integer coordinates and all edges
consist of line segments parallel to the x- or y-axis with integer endpoints. Such
a drawing can be constructed in polynomial time [36]. With slight modifications,
we obtain a drawing such that all inner angles are 120◦. This is to ensure that the
drawing can be embedded into the triangular lattice graph. From there, E can be
constructed as depicted in Figure 28, ensuring that edges have at least length three.
E has O(n2) nodes because the orthogonal drawing fits inside an area of size O(n2).
Let v ∈ V and e ∈ E. We shall refer to the set of nodes representing v and e in E as
Sv and Se, respectively.

The top left shows a planar graph, the middle an orthogonal drawing and the
right a modified version of that drawing with only 120◦ angles. The environment is
depicted at the bottom with nodes in dark gray and edges in light gray.

Inside the environment, the decontamination of the left edge is shown. The
contaminated area is tinted red. Initially, the left tile was placed at the arrow’s origin.
Hence, two tiles representing searchers in G guard the area of E corresponding to an
edge of G. An edge-search strategy would decontaminate that edge by sliding one
of the searchers across it. In E , one tile is moved step by step to the other, effectively
mimicking sliding a searcher.

Figure 28: Constructing an environment from a planar graph via an orthogonal drawing.

theorem 77: Given an n-node planar graph G = (V, E) with maximum node
degree 3, the environment E as constructed above has td(E) = es(G).



54 decontamination in the robot model

Proof. First, we transform an edge-search strategy S , es(G,S) = s into a sequence
of tile movements in E . Initially, all s tiles are located somewhere in E and shall
be regarded as unused until they represent some searcher on G. We now need to
transfer each move of S to a tile movement on E . W.l.o.g., we may assume that at
most two searchers are at the same node, because the only case where more than
one searcher on the same node is necessary is immediately before or after sliding
a searcher. Hence, more than two searchers on a node are unnecessary and can be
removed.

If a searcher is added to a node, an unused tile is placed there or at an adjacent
node inside E , i. e., part of an edge in G. If a searcher is slid along an edge e and
actually clears e, the corresponding tile is moved along Se as depicted in Figure 28.
If a searcher is removed, nothing is done; the tile is simply regarded as unused.

Clearly, the tile movement corresponding to a slide along e decontaminates all
nodes in Se and all paths in E connecting decontaminated and contaminated edges
contain nodes with tiles. Hence, the constructed sequence of tile movements decon-
taminates E .

Next, we transform a sequence of tile movements on E with s tiles into an edge-
search strategy decontaminating G. Consider an edge e ∈ E incident to e′ ∈ E via
v ∈ V such that Se is fully decontaminated while Se′ is not. There has to be a tile in
either Se′ or Sv, separating Se from the contamination in Se′ . That tile is only counted
from node v. Thus, there are at most s such tiles. A searcher shall guard v until the
condition from above does not hold anymore (1).

Since Se might initially be full of tiles and therefore fully decontaminated, that
initial state needs to be replicated in G. There are at most s/3 such edges. We place
two searchers on an incident node and slide one of them along the edge. Thereafter,
all edges e with decontaminated Se are decontaminated as well. We remove searchers
according to (1), having replicated the initial state of E on G.

We now describe how to handle changes in the set of fully decontaminated edges.
If an edge is recontaminated, an Sv might now only be incident to contaminated Se.
In that case, the searcher is removed from v, such that (1) still holds.

Consider the last move of a tile decontaminating Se, e = {v, w}. If the last node of
Se to be decontaminated was not adjacent to Sv or Sw, we add searchers to v such
that it contains two and slide one across to w. This action cannot cause us to use
more than s searchers since there are at least two tiles in Se.

Otherwise, the last node of Se to be decontaminated is adjacent to v, w.l.o.g. There
are now two cases.

(i) w is adjacent to another contaminated edge e′. Hence, there has to be a tile on
Se′ or Sw. We add a searcher to w and slide it to v. At most s searchers are used since
one tile separates e from e′ and another finalizes the decontamination of e.

(ii) e is the sole edge adjacent to w such that Se is not fully decontaminated. In that
case, we add a searcher to w if there is none (this only occurs if deg(w) = 1) and
slide the searcher from w to v. Clearly, the number of searchers does not exceed s for
(ii) as well.

corollary 78: Deciding whether td(E) ≤ s, given s, is NP-hard.

We conjecture this problem to be NP-complete. The result that recontamination
does help for edge search [27] is not directly applicable here, since the tile structure



3.4 complexity 55

needs to remain connected. Hence, the question whether the problem is in NP is
non-trivial.





4
C O N C L U S I O N

In this chapter, we give an evaluation of our work and propose future research
questions.

4.1 evaluation

In this thesis, we have introduced a novel model for performing decontamination
of nanoscale environments using robots and tiles, based on an existing model from
literature. To the best of our knowledge, this is the first time decontamination in
grids with finite-automaton robots and an instantly spreading contaminant has been
studied. We were able to develop asymptotically optimal algorithms for convex
environments, both in terms of runtime and the number of tiles. In more general
environments, we can only guarantee runtime O(n2) with a single robot and up to
O(n3/2) using multiple robots. We believe that faster algorithms should be possible,
considering that O(

√
n) constitutes an upper bound on the number of tiles needed

to decontaminate a simple environment by Lemma 64 and Ω(n3/2) is a lower bound
on the time a single robot needs to decontaminate any environment. For non-convex
environments, we only use multiple robots to speed up the transportation of tiles
from and to the stash, while essentially executing the single robot algorithm with the
leader. Furthermore, we restricted ourselves to bottleneck-free environments and en-
vironments made up from smaller hexagons in the case of complex environments. We
conjecture that these restrictions can be lifted without having to use fundamentally
different algorithms, but that would introduce many technical difficulties.

For the geometric problem of decontaminating polygons using barrier curves,
we developed several approximation algorithms. As far as we know, these are the
first algorithms in literature to decontaminate all simple and complex polygons
with bounds on the bottleneck length in terms of the optimum. We believe that
the techniques from Section 2.5.1 to compress a polygon in such a way that it can
be rasterized in a grid of polynomial size are rather interesting and might have
applications in developing polynomial time approximation algorithms for other
problems on polygons. Although polynomial, the fact that the resulting grids have
O(n14) nodes makes this approach not very practical. However, we conjecture this
bound to not be tight. Improving the bound on the number of vertices in the polygon
after compression to O(n3), as conjectured, would improve the bound on the number
of nodes by a factor of Θ(n3).

When we proposed this research, we expected to be able to apply algorithms
from the geometric model to the robot model. At least on a superficial level, the
techniques used for related classes of environments in both models are similar and
have similar approximation factors (cf. Table 1 and Table 2). Convex environments
are decontaminated by sweeping them with a line. Simple environments are de-
composed into a tree in a way such that a node can be blocked using a number of
nodes or barriers of length not much higher than what is a lower bound for full

57



58 conclusion

decontamination, hence achieving an approximation factor of O(log n). The O(log n)
approximation algorithm for complex polygons as well as the algorithm for STPs
do not seem to be applicable to the robot model due to memory requirements.
The simpler algorithm for complex polygons has a similar approximation factor to
the algorithm for complex environments, if the environment is sufficiently dense.
However, the approach of these algorithms is rather different, in that we use a simple
sweepline technique for robots, while we partition the polygon into a graph and
compute a node-search strategy.

4.2 future work

Besides what we mentioned above, there are many potential avenues to extend the
results from this thesis. Of course, the natural next step would be to improve the
approximation factors and runtime of our algorithms. We are most interested in
proving the conjecture from Remark 28. Generally, approximation algorithms for the
sweepwidth of polygons translate to approximation algorithms for the pathwidth
of partial grids. Therefore, we believe that improving our approximation factors for
complex environments would be very difficult because the best known approximation
algorithm for pathwidth of planar graphs has the approximation factor O(log n).
The problem does not get easier when restricting it to partial grids (cf. Section 3.4).
However, partial grids without holes, corresponding to simple polygons, might be
easier.

One can also consider variants of the geometric problem where the boundary
of environments may be curved. Also, the number of barriers could be restricted.
For a single barrier, this has been studied as ring-width [18]. Our algorithm for
simple polygons uses O(log n) barriers. Another interesting problem is whether
recontamination is needed to achieve optimal sweepwidth (cf. Corollary 47). A
further curious problem is computing a square-tree polygon from a given weighted
tree (see Remark 20).

We have only considered approximation up to a constant factor. Therefore, PTAS
(polynomial-time approximation schemes) could be considered, i. e., achieving ap-
proximation factor ϵ in polynomial time for any fixed ϵ > 0. Additive approximation
of pathwidth is known to be NP-hard [5]. These results do not easily translate to
our models since the proof makes use of non-planar graphs. Further open hardness
questions for sweepwidth and the minimum number of tiles might be interesting
to investigate, including simple environments and polygons with polynomially
bounded integer coordinates.

Regarding the robot model, we conjecture that a triangle with side length h cannot
be decontaminated with fewer than h tiles (cf. Lemma 59). In our algorithm for simple
environments, the time to transport tiles from and to the stash is the bottleneck in
terms of the runtime. We believe that it could be improved by not always bringing
tiles back to the stash but instead storing them in some kind of temporary stash
closer to the barriers.

Fault tolerance might also be interesting to consider in the robot model when
dealing with multiple robots. Our current algorithms rely heavily on a leader and
therefore are not directly applicable under the presence of faults. Finally, both models
could be extended to three dimensions.



B I B L I O G R A P H Y

[1] Y. Altshuler, A. Pentland, and A. M. Bruckstein. Swarms and Network Intelligence
in Search. Springer International Publishing, 2018.

[2] B. Bhattacharya, T. Kameda, and J. Z. Zhang. “Surveillance of a polygonal area
by a mobile searcher from the boundary: Searchability testing.” In: 2009 IEEE
International Conference on Robotics and Automation. 2009, pp. 2461–2466.

[3] H. Blum. “A transformation for extracting new descriptors of shape.” In:
Models for the Perception of Speech and Visual Form. Ed. by W. Wathen-Dunn. MIT
Press, 1967, pp. 362–381.

[4] H. L. Bodlaender. “A partial k-arboretum of graphs with bounded treewidth.”
In: Theoretical Computer Science 209.1 (1998), pp. 1 –45. issn: 0304-3975.

[5] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. “Approximat-
ing treewidth, pathwidth, and minimum elimination tree height.” In: Graph-
Theoretic Concepts in Computer Science. Ed. by G. Schmidt and R. Berghammer.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1992, pp. 1–12. isbn: 978-3-540-
46735-9.

[6] F. Y. Chin, J. Snoeyink, and C. A. Wang. “Finding the Medial Axis of a Simple
Polygon in Linear Time.” In: Discrete & Computational Geometry 21.3 (1999),
pp. 405–420. issn: 1432-0444.

[7] H. I. Choi, S. W. Choi, and H. P. Moon. “Mathematical theory of medial axis
transform.” In: Pacific Journal of Mathematics 181.1 (1997), pp. 57–88.

[8] Y. Daadaa, P. Flocchini, and N. Zaguia. “Network Decontamination with
Temporal Immunity by Cellular Automata.” In: Cellular Automata. Ed. by S.
Bandini, S. Manzoni, H. Umeo, and G. Vizzari. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 287–299. isbn: 978-3-642-15979-4.

[9] Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, and T. Strothmann.
“Universal Shape Formation for Programmable Matter.” In: 28th Annual ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA). 2016, pp. 289–
299.

[10] Z. Derakhshandeh, R. Gmyr, T. Strothmann, R. Bazzi, A. W. Richa, and C.
Scheideler. “Leader Election and Shape Formation with Self-organizing Pro-
grammable Matter.” In: DNA Computing and Molecular Programming. Ed. by A.
Phillips and P. Yin. Cham: Springer International Publishing, 2015, pp. 117–132.
isbn: 978-3-319-21999-8.

[11] D. Dereniowski. “Approximate search strategies for weighted trees.” In: Theo-
retical Computer Science 463 (2012). Special Issue on Theory and Applications of
Graph Searching Problems, pp. 96 –113. issn: 0304-3975.

59



60 bibliography

[12] D. Dereniowski and D. Urbańska. “On-line Search in Two-Dimensional Envi-
ronment.” In: Approximation and Online Algorithms. Ed. by R. Solis-Oba and
R. Fleischer. Cham: Springer International Publishing, 2018, pp. 223–237. isbn:
978-3-319-89441-6.

[13] F. V. Fomin and D. M. Thilikos. “An annotated bibliography on guaranteed
graph searching.” In: Theoretical Computer Science 399.3 (2008). Graph Searching,
pp. 236 –245. issn: 0304-3975.

[14] S. Fortune. “A sweepline algorithm for Voronoi diagrams.” In: Algorithmica 2.1
(1987), p. 153. issn: 1432-0541.

[15] R. Gmyr, K. Hinnenthal, I. Kostitsyna, F. Kuhn, D. Rudolph, C. Scheideler, and
T. Strothmann. “Forming Tile Shapes with Simple Robots.” In: DNA Computing
and Molecular Programming 24th International Conference, DNA 24, Proceedings.
2018 (forthcoming).

[16] R. Gmyr, I. Kostitsyna, F. Kuhn, C. Scheideler, and T. Strothmann. “Forming tile
shapes with a single robot.” In: Abstr. 33rd European Workshop on Computational
Geometry (EuroCG). 2017, pp. 9–12.

[17] R. Gmyr, K. Hinnenthal, I. Kostitsyna, F. Kuhn, D. Rudolph, and C. Scheideler.
“Shape Recognition by a Finite Automaton Robot.” In: 43rd International Sym-
posium on Mathematical Foundations of Computer Science (MFCS 2018). Ed. by
I. Potapov, P. Spirakis, and J. Worrell. Vol. 117. Leibniz International Proceed-
ings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2018, 52:1–52:15. isbn: 978-3-95977-086-6.

[18] J. E. Goodman, J. Pach, and C. K. Yap. “Mountain Climbing, Ladder Moving,
and the Ring-Width of a Polygon.” In: The American Mathematical Monthly 96.6
(1989), pp. 494–510.

[19] Q.-P. Gu and G. Xu. “Near-Linear Time Constant-Factor Approximation Al-
gorithm for Branch-Decomposition of Planar Graphs.” In: Graph-Theoretic
Concepts in Computer Science. Ed. by D. Kratsch and I. Todinca. Cham: Springer
International Publishing, 2014, pp. 238–249. isbn: 978-3-319-12340-0.

[20] M. E. Houle and G. T. Toussaint. “Computing the width of a set.” In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 10.5 (1988), pp. 761–765.
issn: 0162-8828.

[21] F. Hurtado, E. Molina, S. Ramaswami, and V. Sacristán. “Distributed reconfig-
uraiton of 2D lattice-based modular robotic systems.” In: Autonomous Robots
38.4 (2015), pp. 383–413.

[22] B. Karaivanov, M. Markov, J. Snoeyink, and T. S. Vassilev. “Decontaminating
Planar Regions by Sweeping with Barrier Curves.” In: CCCG. 2014.

[23] L. M. Kirousis and C. H. Papadimitriou. “Interval graphs and searching.” In:
Discrete Mathematics 55.2 (1985), pp. 181–184. issn: 0012-365X.

[24] L. M. Kirousis and C. H. Papadimitriou. “Searching and pebbling.” In: Theoret-
ical Computer Science 47 (1986), pp. 205–218.



bibliography 61

[25] K. Klein and S. Suri. “Catch Me if You Can: Pursuit and Capture in Polygonal
Environments with Obstacles.” In: Proceedings of the Twenty-Sixth AAAI Confer-
ence on Artificial Intelligence. AAAI’12. Toronto, Ontario, Canada: AAAI Press,
2012, pp. 2010–2016.

[26] E. Korach and N. Solel. “Tree-width, path-width, and cutwidth.” In: Discrete
Applied Mathematics 43.1 (1993), pp. 97 –101. issn: 0166-218X.

[27] A. S. LaPaugh. “Recontamination Does Not Help to Search a Graph.” In: J.
ACM 40 (1993), pp. 224–245.

[28] M. Lassak. “Approximation of convex bodies by rectangles.” In: Geometriae
Dedicata 47.1 (1993), pp. 111–117. issn: 1572-9168.

[29] D. T. Lee. “Medial Axis Transformation of a Planar Shape.” In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 4.4 (Apr. 1982), pp. 363–369. issn:
0162-8828.

[30] M. Markov, V. Haralampiev, and G. Georgiev. “Lower bounds on the directed
sweepwidth of planar shapes.” In: (2015).

[31] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou.
“The Complexity of Searching a Graph.” In: J. ACM 35.1 (Jan. 1988), pp. 18–44.
issn: 0004-5411.

[32] B. Monien and I. Sudborough. “Min cut is NP-complete for edge weighted
trees.” In: Theoretical Computer Science 58.1 (1988), pp. 209 –229. issn: 0304-3975.

[33] T. D. Parsons. “Pursuit-evasion in a graph.” In: Theory and applications of graphs.
Springer, 1978, pp. 426–441.

[34] M. J. Patitz. “An introduction to tile-based self-assembly and a survey of recent
results.” In: Natural Computing 13.2 (2014), pp. 195–224.

[35] N. Sarnak and R. E. Tarjan. “Planar point location using persistent search
trees.” In: Communications of the ACM 29.7 (1986), pp. 669–679.

[36] R. Tamassia. “Planar orthogonal drawings of graphs.” In: IEEE International
Symposium on Circuits and Systems. 1990, 319–322 vol.1.

[37] J. Urrutia. “Chapter 22 - Art Gallery and Illumination Problems.” In: Handbook
of Computational Geometry. Ed. by J.-R. Sack and J. Urrutia. Amsterdam: North-
Holland, 2000, pp. 973 –1027. isbn: 978-0-444-82537-7.

[38] F.-E. Wolter. “Cut locus and medial axis in global shape interrogation and
representation.” In: MIT Design Laboratory Memorandum 92-2 and MIT Sea Grant
Report. 1992.

[39] D. Woods, H.-L. Chen, S. Goodfriend, N. Dabby, E. Winfree, and P. Yin. “Active
Self-assembly of Algorithmic Shapes and Patterns in Polylogarithmic Time.”
In: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science.
ITCS ’13. Berkeley, California, USA: ACM, 2013, pp. 353–354. isbn: 978-1-4503-
1859-4.

[40] C.-K. Yap. “How to move a chair through a door.” In: IEEE Journal on Robotics
and Automation 3.3 (1987), pp. 172–181. issn: 0882-4967.


	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Models
	1.2.1 Robot Model
	1.2.2 Geometric Model
	1.2.3 Graph Model

	1.3 Related Work
	1.4 Our Contribution

	2 Decontamination of Polygons
	2.1 Optimal Sweeps
	2.2 Convex Polygons
	2.3 A Class of Polygons with an O(1) approximation
	2.3.1 Square-tree Polygons and Weighted Node Search
	2.3.2 Constructing a Decontamination Sweep

	2.4 Simple Polygons
	2.4.1 Medial Axis
	2.4.2 Constructing a Decontamination Sweep

	2.5 Complex Polygons
	2.5.1 Rasterization
	2.5.2 Computing Node-search Strategies
	2.5.3 Polygon Compression
	2.5.4 Faster Algorithm


	3 Decontamination in the Robot Model
	3.1 Convex Environments
	3.1.1 Parallelograms
	3.1.2 Triangles and Trapezoids
	3.1.3 Pentagons and Hexagons

	3.2 Simple Environments
	3.3 Complex Environments
	3.4 Complexity

	4 Conclusion
	4.1 Evaluation
	4.2 Future Work

	 Bibliography

